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Editorial

Modelling of Financial Markets
and Risk-Management

This special issue of the journal contains several papers discovering different aspects of financial
markets modelling, option pricing and quantitative risk-management.

The paper by Campoliety, Kato, and Makarov studied a new pricing model with stochastic/rand-
omized volatilities. The models considered here assume that the underlying asset price distributions
admit fat tails, which is an attractive feature of the paper. The authors exploit a randomized proce-
dure on the volatility of the Geometrical Brownian Motion model to construct new pricing models
developed in detail for the randomized gamma and randomized inverse gamma cases. Both models
are characterized by shape and scale parameters and admit closed form analytical density expres-
sions allowing non-arbitrage option prices. The authors have shown that the randomized gamma
and inverse gamma models are accurately calibrated to market equity option data.

The paper by Kozlov and Noga proposes a methodology for assessing the risk associated with
subjective factors that may affect a business project in the context of its information security. The
technique developed by the authors uses the fuzzy logic method, which allows determining the de-
pendence of the risks affecting the achievement of the goal of such a business project. The proposed
methodology helps avoid incorrect management decisions in the sense of the cost of the project and
the effectiveness of the company’s personnel policy.

In the paper by Maximov and Melnikov, the authors investigated the CVaR methodology of risk-
management for spread options. Besides pure theoretical results, an approximative method to de-
termine CVaR is systematically developed. They have shown that the approach works very well in
comparison with other methods exploited in this area. Moreover, the paper demonstrates interesting
applications to the field of regulatory capital towards the Basel Committee recommendations.

The paper by Vasilev and Melnikov is devoted to the method of completions of financial markets.
The leading and promising idea of such a method is to replace the set of risk-neutral measures with
the equivalent set of completions of the incomplete market under considerations. The paper provides
an exposition of this approach which may lead to the dual theory of option pricing in incomplete
markets and the markets with different constraints. The paper shows the potential of this method in
solving risk-management problems in the context of optimal investment and partial hedging.

In the paper by Smirnov and Sotnikov, the authors compared option process in the Bachelier model
and the Black-Scholes model with the help of the probability metrics technique. They showed that
it is necessary to use different metrics for different options. The authors also demonstrate how to
calibrate such metrics by giving illustrative examples.

Dr Alexander Melnikov
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ABSTRACT

By employing a randomisation procedure on the variance parameter of the standard geometric Brownian
motion (GBM) model, we construct new families of analytically tractable asset pricing models. In particular,
we develop two explicit families of processes that are respectively referred to as the randomised gamma (G)
and randomised inverse gamma (IG) models, both characterised by a shape and scale parameter. Both models
admit relatively simple closed-form analytical expressions for the transition density and the no-arbitrage
prices of standard European-style options whose Black-Scholes implied volatilities exhibit symmetric smiles
in the log-forward moneyness. Surprisingly, for integer-valued shape parameter and arbitrary positive real
scale parameter, the analytical option pricing formulas involve only elementary functions and are even more
straightforward than the standard (constant volatility) Black-Scholes (GBM) pricing formulas. Moreover, we
show some interesting characteristics of the risk-neutral transition densities of the randomised G and IG
models, both exhibiting fat tails. In fact, the randomised |G density only has finite moments of the order
less than or equal to one. In contrast, the randomised G density has a finite first moment with finite higher
moments depending on the time-to-maturity and its scale parameter. We show how the randomised G and
IG models are efficiently and accurately calibrated to market equity option data, having pronounced implied
volatility smiles across several strikes and maturities. We also calibrate the same option data to the well-
known SABR (Stochastic Alpha Beta Rho) model.

Keywords: static randomisation; pricing European-style options; Black-Scholes implied volatility; calibration;
randomised GBM models; SABR model

For citation: Campolieti, G., Kato, H., & Makarov, R. (2021). Option pricing under randomised GBM models.
Review of Business and Economics Studies, 9(3),7-26.DO01:10.26794/2308-944X-2021-9-3-7-26

OPUTUHANBHAA CTATbA

OueHkKka CTOMMOCTM ONLMOHOB
ANS paHAOMU3UPOBAHHbIX MOAENEMN
reoMeTpuyeckoro 6poyHoBCKOro ABMXKEHUS

Dxy3senne Kamnonuetu, Xupomuuu Kato, PomaH Makapos
YHuepcuteT Yundpuaa Jlopbe, Batepnoo, OHTapuo, KaHaaa

AHHOTALUA
Mcnonb3ys npoueaypy paHLOMMU3aUMKM AMCNEPCUN CTAHAAPTHON MoAenu reometTpuyeckoro bpoyHckoro
nwxkeHus (FBM), aBTopbl NOCTPOMIM HOBble CEMEWCTBA AaHAIMTUYECKMU peLlaeMbiX Moaenei LeHoobpa-
30BaHMs GMHAHCOBbIX aKTMBOB. B yacTHoCTH, Bbinn pa3paboTaHbl ABa CEMENCTBA NPOLECCOB, 3 UMEHHO
mMoaenn — paHgoMmusnmpoBaHHasa ramma (I u paHgoomMusnpoBaHHasa obpaTtHas ramma (Of), koTopble xa-
pakTepu3ylTca napameTpamm Gopmbl M MaclwTaba. Obe Mogenn LONyCcKakT AOBOJIbHO NMPOCTblE aHANMU-
TUYECKME BblIpaXKeHUs AN NNOTHOCTM nepexofa u 6e3apOuTpakHOM LeHbl CTaHLAPTHbIX €BPOMeRCKUX

© Giuseppe Campolieti, Hiromichi Kato, Roman Makarov, 2021
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onunoHoB. BonatunbHocTb bnaka-Lloynsa nposasnsgetr CUMMETPUUYHYIO «yNblOKY» ANg norapudMmnyecku
dopBapAHON AeHexXHOCTU. [[puMeyaTenbHo, HO NS LenblX 3HaYeHM napamMeTpa GOpMbl U NPOU3BOSb-
HOro MONIOXMTENbHOTO NapamMeTpa MacwTaba aHanuTMyeckme dopmynbl LeHoobpa3oBaHWS BapMAHTOB
BKJ/IKOYAIOT TO/IbKO 3/1EMEHTAPHbIE QYHKLUU U [axe ABASIOTCA Npole CTaHLAPTHbIX (418 NOCTOSIHHOM BO-
natunbHoctn) dopmyn LeHoobpasoBaHus bnaka-Loynsa (Mogenb MB). B cTaTbe AaHbl XapakTepUCTUKU
PUCK-HENTPaNbHOM MJIOTHOCTEN Nepexona ANg paHAOMU3MPOBaHHbIX Mogenen [ n Of, koTopble 4EMOH-
CTPUPYIOT «TSKENble XBOCTbI». PAHAOMU3NMPOBaHHbIE MAOTHOCTM Ans Mogenn O MMeIoT TONbKO KOHEeYHble
MOMEHTbI NMOPSAKA MEHbLUE UK PaBHble OAHOMY, B TO BpeMS Kak paHAOMW3MPOBAHHAN NNOTHOCTb ANS
mMoaenu [ UMeeT KOHEYHbIN MepBblii MOMEHT M KOHEYHble MOMEHTbI Honee BbICOKOrO Nopsaka B 3aBU-
CMMOCTM OT CpOKa MoralleHus onuMoHa 1M napameTtpa MacwTaba. [lokaszaHo, kak PpaHALOMU3UPOBAHHbIE
mopenu I'u OF MoryT 6bITb 3DEKTUBHO M TOYHO OTKANMOPOBAHbLI A1 PbIHOYHbBIX 3HAYEHUIA ONLMOHOB,
LLEMOHCTPUPYIOLWMUX «yNblOKY» BONATUIBHOCTM AN PA3/IMUHbBIX LLEH UCMOJIHEHWUS M CPOKOB MOralleHus.
OTkanubpoBka npoBeaeHa ¢ nomouwbto mogenu SABR (Stochastic Alpha Beta Rho). lpoBeaeHo cpaBHe-
HUe 3TUX Mogenen.

Kntoyesvie cnoea: ctatmyeckas paHLoMm3aums; LeHoobpa3oBaHWe OMLMOHOB €BPOMNENCKOro CTUAS; No4pa-
3ymeBaeMas BonaTunbHOCTb bnaka-Lloyn3a; kannbposka; paHaoMusmpoBaHHble Mogenu GBM; monens SABR

1 Introduction
Mathematicians have developed stochastic
models to value options. The geometric Brown-
ian motion (GBM) model is known as one of the
simplest continuous-time models that admit
analytical closed-form formulas for pricing vari-
ous options (Black & Scholes, 1973). The GBM
model is a complete market model where risks
can be perfectly hedged. A significant limitation
is that there is a discrepancy between antici-
pated Black-Scholes (BS) prices and the market
option prices since the model fails to capture
price movements for extreme events (MacBeth &
Merville, 1979). Local volatility diffusion models
(also known as state-dependent volatility mod-
els) are more flexible continuous-time models
known for describing the behaviour of implied
volatility smile and skew patterns observed in
a marketplace. Local volatility diffusion models
are also complete market models like the GBM
model. In fact, the (one-dimensional) GBM mod-
el is simply a local volatility model with constant
local volatility.

In some cases, nonlinear local volatility mod-
els admit closed-form formulas for pricing vari-
ous options. Families of local volatility diffusion
models that can be analytically solved in closed
form have been developed in several papers, see,
e.g., Albanese, Campolieti, et al. (2001) and Cam-
polieti and Makarov (2012). They are obtained by
applying the “diffusion canonical transformation”
to solvable underlying diffusions such as the Bes-
sel, Cox-Ingersoll-Ross and OrnsteinUhlenbeck
processes. These models have been shown to cali-
brate quite well to equity and FX options. One

8

drawback of local volatility diffusion models is the
inherent perfect correlation between the underly-
ing asset price and the volatility. In some cases,
this contradicts the empirical evidence that they
should have an imperfect negative correlation
(Rubinstein, 1985).

The stock market is incomplete in many situ-
ations as traders cannot use options for hedging
all the risks. Stochastic volatility models are in-
complete and assume that volatility is a random
process. We can make the movements of the un-
derlying asset price and the volatility to be nega-
tively correlated. A first example is the Hull and
White stochastic volatility model. Hull and White
(1987) derived the closed-form pricing formulas
for European vanilla options under their model
with zero correlation. They are obtained by aver-
aging the BS prices over the integrated squared
instantaneous volatility process. Theoretical re-
sults of implied volatility under the GBM model
with stochastic volatility are given in Renault &
Touzi’s paper (1996). They have shown that an
implied volatility surface is an even function of
the log-forward moneyness and necessarily pro-
duces a smile effect under the models with zero
correlation. Thus, these models may be used to
calibrate to option price market data.

A second example is the Heston model. Heston
(1993) successfully applied the Fourier transform
method to evaluate European vanilla options with
an arbitrary correlation between the asset price
and the volatility. He also showed that the dis-
tribution of asset returns is asymmetric. Also, he
found that when the marginal distributions of
the asset returns and the volatility are negatively
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skewed. Moreover, the BS out-of-the-money (OTM)
option prices are negatively biased (i.e., BS OTM
option prices are usually smaller when compared
to market prices). BS in-the-money (ITM) option
prices are positively biased.

A third example is the SABR model introduced
by Hagan et al. (2002). The implied volatility curve
captured by the SABR model gives consistency
with the observed marketplace in dynamics. Other
examples are regime-switching models. Bollen
demonstrated that the model with two regimes
could produce pronounced symmetric smiles in
the log-forward moneyness, giving consistency
with the higher BS pricing errors for shorter ma-
turities (Bollen, 1998).

This paper constructs new pricing models with
randomised volatility, where underlying asset
price distributions exhibit fat tails and admit sim-
ple closed-form analytical expressions for stand-
ard European-style option prices. In particular,
we assume that: 1) a unique risk-neutral pricing
measure exists (in advance), 2) the underlying
asset price processes have a finite first moment
but possibly infinite higher moments, 3) there are
no correlations between the asset prices and their
volatility, and 4) the volatility (squared volatil-
ity) coefficient is a random variable with known
probability density function (PDF). The assump-
tions 1) and 2) are based on the Put-Call Parity
methodology in Taleb (2015). This methodology
neglects the strong (but surreal) assumptions
from the dynamic hedging argument and exhibits
better practical phenomena in financial markets.
The assumptions 1)-4) allow for deriving closed-
form expressions (under our new pricing models)
by taking a mathematics expectation under dif-
fusion models over the underlying probability
distribution for the volatility. Our methodology
for computing option prices is closely related to
the Bayesian framework in the GBM model studied
by Darsinos and Satchell (2007). They considered
randomising the volatility where the variance fol-
lows the inverse gamma distribution. They were
successful in deriving analytically closed-form
expressions for the joint PDF of the asset price
and the volatility, as well as the marginal PDF of
the asset price. However, they could not determine
the call pricing formulas analytically, and the
option prices could only be obtained numerically.

This paper is organised as follows. Section 2
proposes a general theory of static randomisation

under the GBM model, including the almost eve-
rywhere (a.e.) existence of transition probability
density functions (PDF) of newly constructed as-
set price processes. We then derive the transition
PDFs of the asset price process with static ran-
domisation of the parameter under two families of
static randomisation, namely the gamma (G) and
the inverse gamma (IG) randomisation. Section
3 states the main results of this paper, including
the closed-form expressions of a European vanilla
call option and the characteristics of shapes of
the implied volatility. In Section 4, we conduct
our numerical experiments pertaining to model
calibrations to market option data. Finally, we
state some concluding remarks with some discus-
sions of future applications.

2 Randomised GBM Models and their
Characteristics

Let (Q,F,P,{F},,) be some fixed filtered (risk-
neutral) probability space where {£} _, is the
natural filtration generated by the P -BM. As-
sume a two-asset economy where the risky asset
price (diffusion) process {S,},., follows a GBM
with stochastic differential equation (SDE):

d;' =rdt +~vdW,; S, >0,

t

where r is the constant risk-free rate, y is a
constant variance and (W}, is a standard
P -BM (i.e., Brownian motion under the risk-
neutral measure with a bank account as numé-
raire). The (risk-neutral) transition PDF for this
process (for a given variance vy) is time-ho-
mogeneous, depending on the time difference

t=T-t:

Pis(S; edy)=P(S,; edy|S, =85)=

1 —(x+lvr)2/2vr
= e 2

y2mvt

, (D
S,y>0,1>0,

dy;

where x=In(y/S)-rt. We now consider ran-
domising the parameter v by introducing the
random variable V to distinguish it from the
parameter v. Then, we can formulate the pric-
ing function for a standard European-style op-
tion with payoff function A by:

V(r,S)=e" jQ Brs[AS,) (@), 1=T-1.2)
v

9



Option Pricing under Randomised GBM Models

Note that ¥, denotes the pricing function for a given choice of the random variable 1 on a sample
space Q,, c R, , where p, is a probability measure for V.! In the case of an absolutely continuous
random variable V we have u,,(dv) =u,,(v)dv with PDF p,,(v). The (marginal) transition PDF for the
asset price process with randomised volatility (the randomised GBM process), denoted by {S},.,
is defined for fixed 1,5 >0 as:2

Pos(Sy edy)=] Pus(S; edym, (@) (3)
v
We can easily show that the transition PDF integrates to one:
J'O P,s(SY edy)= jﬂv ( jo Prs(S, e dy))uv(dv) =1.

By a simple application of Fubini’s theorem, the transition PDF for {S)} ., is well-defined (a.e.)
for every fixed 1, > 0. We can easily show that the discounted randomised process {¢™"S)},., is a

t
P -martingale process *
Eis|S) |=B[Sy|S) =8]=Se".

In what follows, we specify the distribution of Vin two separate ways: as a gamma random vari-
able and as an inverse gamma random variable.

We now look at the transition PDF for the randomised asset price process under the gamma
randomisation (the randomised G process), denoted by {S°®"} ., , where V follows the gamma
distribution with shape parameter gand scale parameter A (i.e., V ~ G(8,))). The PDF of Vis

Mg o (@v) = vole My, B,0>0, Qg =R

+9

A°T(0)

where T'(0)= e 't is the gamma function. We state a useful integral formula (see Prudnikov,
Brychkov, & Marichev, 1986, Eq. 2.3.16.1):

r/2
-"Ovr—le—pv—q/vd‘,:Q(ij Kr(z@); reR, p,q>0, )
p

where K, is the modified Bessel function of the second kind of order v . It gives the analytical ex-

pression for the transition PDF for {S°®"} _ :

~ e *? 2\ aax? O x|v8+At
Pf,s(STG(e’Medy)= ( ] Ko 1/ [x] dy.

yar®)\at) | 8+t 2 I

! One may think that ) is a random variable on (Q, F, I@) where QV is the range of V and M,y is the distribution measure.
2 Note that [P;s (S}} € dy) =p,(7;S,y)dy ,where T=T —t and p(7;8,y) = p(7;8, Y| V) is the transition PDF
(in (1)) of the GBM process for a given volatility parameter value V. Hence,

P..(S; € dy)

dy
{Stv }120 )

3 Recall that the discounted asset price process under the GBM model {e_nSt}rzo is a [P -martingale process. Here an

= pv(T; S,y)= J;z p(: S, y| V),le (dv) s the transition PDF of the randomized asset price process
v

™ % vV _ v
underlying filtered probability space for the randomized process is (Q, -7:, P, {‘7:; },20 ) where f; = O'(Su ,0<su< t) .

10
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Where x=In(y/S)-rt .Note that for 6=ne N, the transition PDF can be represented by el-
ementary functions. The asymptotic behaviours of the transition PDF at the endpoints are:

Prs(SECY edy) |y (n(1/ )™ as y—0,
dy y—3/2—«/(8+7n:)/47w(lny)e—l as  y—soo.

Based on these asymptotic expressions, we conclude that the o -moment of the randomised G

process:
< /8 +AT .
421

It implies the first moment exists, but the second moment exists iff At <1.Furthermore, we have
an explicit formula for the second moment:

1
a__
2

Ers [(S?‘”’ )2} =5%>"(1-M)"%; for At<l.

Let us now consider the transition PDF for the asset price process under the inverse gamma ran-
domisation (the randomised IG process), denoted by {S/9®} _ . Assume that V follows the inverse
gamma distribution with shape parameter 6 and scale parameter A (i.e., ¥V ~ IG(6,A)). The PDF of
Vis

}LO
WG (dV) = Te)(

1

— Y
y

0+1
j e v, 0,4>0, Qg4, =R

By using the integral identity in (4) we obtain the transition PDF for {S/°®"}_, :

P.s (577N e dy) =

-x/2 0 s 2
e (Mj (x2 +2M) 0/2-1/4 Kgﬂﬂ(ﬁx +2M]dy,

yar@\ 2 2

where x=In(y/S)-rt.The asymptotics of the transition PDF are now as follows:

Pus(S/°®Y edy) [y (In(1/»)*" as y—0,
dy y2(Iny)®' as y e

These two asymptotics give
Er.s [(STG(“))Q} <eo iff 0<a<l.

We can see from Figures 1 and 2 that the GBM has the thinnest tail among the three models for
0=1,2. The left plot in Figure 1 shows that for 6 =1, the randomised G process has a thinner tail
than the randomised IG process for 6 =1. The randomised G process appears to have the thickest
tail among the three when 6 =2, but eventually, the randomised G process tails off faster than the
randomised IG process, as shown at the right plot in Figure 2. It is interesting to see that the PDF of
the randomised G process is uniform for y < Se™ at the right plot in Figure 1. We can also observe
that the PDF of the randomised G process is not differentiable at y = Se’" since K (z)is not differ-
entiable at z=0.

11
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3 Main Results
The conditional risk-neutral probability that the randomised asset price process is above the strike
K at a time T’ can be written as elementary analytical functions for 6 =ne N .* The reader may re-
fer to Appendix 6 for the details. It helps us obtain analytical pricing formulas for European vanilla
options. We will illustrate it in this section. The price of a European VSanllla call option, denoted by
C,(1,5;K,r), can be written in terms of P,sand P.s.Here IP’; s =P; s is an equivalent martingale
measure with the original asset (e.g., stock) price process {S,},.,as the numéraire. We have

- C,(1,S;K,r) = -
Cy(t,m)= % =Prs(S) > K)—e "Prs(S) > K)> (%)

where ris the current time, 7 is the expiry time, t=7-¢is the time to maturity and
m=In(S / K)+rtis the log-forward moneyness.® For the randomised G process with 8=neN, we
have (call price divided by the spot §):

1/4
Comn(t,m)=(1-e")" + |m|( M ) o2

Jr (8+A1 ©

z: ( 2| m| ij m|\/8+7u:

S\ as+a) 2 U

where (x)" =max{x,0} . For the randomised IG process with g =< N, we have
k
~ 2 27M 1/4 n—ll 7\‘ / 2 2}\/
C[G(n,x)(’c,m)zl—uefmﬂz_' —T K1 N+ SAT (7)
Jn K\ oNm? + 20t 2

We derive general formulas for the main Greeks of a European vanilla call option under randomi-
sation. The general formulas are summarised in Table 1.

It can be shown that the option prices in (6) and (7) retain the symmetry property (see Renault &
Touzi, 1996, Prop. 3.1),

Cy(t,m)=(1—e"™)+e " Cy(t,~m),

and exhibit symmetric smiles in the BS implied volatility. In Figure 3, we can see that for given A >0,
1> 0and log-forward moneyness m , the BS implied volatility is increasing in 6, and deep in- (and

out-) of-the-money option (i.e., large values of m in absolute term) prices are more sensitive to the

parameter 0than near in- (and out-) of-the-money option (i.e., small vale of m in absolute term) pric-
es. In Figure 4, we can see that for given A >0, 1> 0and log-forward moneyness m , the BS implied

volatility is decreasing in 0, and deep in- (and out-) of-the-money option prices are less sensitive to

the parameter 0than near in- (and out-) of-the-money options. Both figures show symmetric smile

effects. We can also see that the BS implied volatility under the gamma randomisation exhibits the

V-shaped (i.e., locally concave) smile. In contrast, the BS implied volatility under the inverse gamma

randomisation displays the U-shaped (i.e., locally convex) smile. We will show in the next section that

the inverse gamma randomisation model calibrates well to some U-shaped market volatility. Hence,
it may be helpful for practitioners to employ this model. However, the gamma randomisation model

does not commonly fit well as we rarely see market volatility with concave smiles in practice.

+For @ ¢ N, we can derive the at-the-money forward (ATMF) option prices in closed-form in terms of the hypergeometric func-
tions. The reader may refer to Appendix 7 for the details.

5 Throughout, we denote m = m(S, K,7) = In(S / K) + r7 to avoid clutter.
12



Option Pricing under Randomised GBM Models

4 Numerical Example

In this section, we calibrate our models to some market option data. We extracted the market data
for the Coca-Cola European call options with spot time on April 2, 2019. The market data contains
354 sample data points with 15 distinct values of the maturity time. The market volatility in the
data set exhibits pronounced smiles across different strikes for short times to maturity and skewed
smiles for long times to maturity. We decided to compare the performance of the new models with
the SABR model because the latter admits a closed-form yet simple celebrated formula for approxi-
mate implied volatility. We calibrated the models to the market data among classes consisting of
all observations with the same maturity times because the SABR model calibrates well at a single
maturity but does not calibrate well at multiple maturities (Wu, 2012). The summary of the market
data used here you can found in Table 2. The reader may refer to Tables 3, 4, 5 and Figures 5, 6, 7, 8
for the results.

Suppose that 1", ¥ are the observed market option price and market volatility respectively for
i=1,...,N where N_=#S_ is the number of observations with maturity time t, and 7, K; are the
corresponding maturity time and strike price. Define 7 ={r,:i=1,...,N}as the collection of maturity
times in the data set arranged in increasing order. Let S, ={i|t; =1t T'}be the collection of observa-
tions with maturity time t e 7T . For each t,we use the usual root mean squared error (RMSE) as a loss
function L(6,A) for the model calibration under the gamma and the inverse gamma randomisation:

3 (Va.s:K)-V )
L.(6,1)= % N ; teT,

T

where N, =4#S,is the number of observations with maturity time 1, and t,, K, are the correspond-
ing maturity time and strike price. Alternatively, for the SABR model, we use a formula from Hagan
et al. (2002), denoted by G,z , to find optimal values of parameters that minimise the difference
between the corresponding BS implied volatility and the market volatility in the RMSE sense. Hence,
the loss function for the SABR model calibration is:

Z(GSABR(TiaS,G;Ki)—Z:)Z
Lieup.op)=| = I . 1eT,

T

For the SABR model parameters, we attempted to find optimal values for the parameters
(0,,6,p) = (au(B),o(B),p(B)) across different values of pe[-1,0], and find the optimal value of by
comparing the associated RMSEs.® We found that f =-1gave the lowest RMSE.

Based on Tables 3, 4, and 5, we found that: the inverse gamma randomisation performs better
than the gamma randomisation because the RMSE is smaller for fixed t.Figures 5, 6, 7, and 8 sug-
gest that the inverse gamma randomisation performs quite well for short maturity times, and the
SABR model fits almost perfectly.

5 Conclusion
In this paper, we constructed the randomised GBM processes under the gamma and the inverse
gamma randomisation, namely the randomised G and IG processes. We observed that both processes
had thicker tails than the GBM process, and the randomised IG process had the heaviest tails among
the three. We obtained explicit no-arbitrage pricing formulas for European vanilla call options with

¢ In our data set, we saw that ,3 was not a robust parameter since the optimal value for ﬂ varies with different initial values of
,B . So we used the calibration method in Hagan et al. (2002) to find ﬂ in advance. There are different approaches for the SABR
model calibration, see e.g., West (2005).

13
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integer-valued shape parameter and ATMF op- la. We found that the inverse gamma randomi-
tion prices with real-valued shape parameter. sation fitted well, especially for short maturity
Surprisingly, the pricing formulas presented in  times.

this paper are even simpler than the classical Further applications of the randomised models
GBM model as they are expressed as elementa- will be discussed in other planned future papers.
ry analytical functions. The option prices were = We will provide analytical extensions that take
also obtained numerically in an efficient man- into account imposed killing, leading to closed-
ner. The European-style option prices under the form formulas for specific exotic options under the
new processes exhibit symmetric smiles in the randomised models. We will build a randomisation
log-forward moneyness. We calibrated the ran- framework in a multi-asset economy and examine
domised GBM models and the SABR model to the analytical tractability of other complex deriva-
the actual market option data set from Coca-Co- tives for payoffs, depending on two or more assets.
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Table 1
Greeks of a European vanilla call option under randomisation

Name Notation Formula (Note: m = ll’l%-H”C)
aC 1 m+EVT
% —| erfc| ———=—=— |u,(dv)
Delta Ay = 28 2'[91» Jor [
1 1 —(m-%—lvﬂr)2 /2vt
9’C ~| = T v
Gamma Iy = BS; S'[Qv \2mvt v
1
aC L[ erf SR W
_9% Ste™" —| erfc| ———— |, (dv
Rho Pv="3, 270, Javr [V
L2
Theta L 2 Y9, \2nt T

Source: The authors.

Table 2
Set of parameters and stopping criterion to be used for calibrating to the market data

Variable Description Value
S spot price 46.57
r constant risk-free rate 0%
T 0.008 ~1.792

maturity times (in years)

K strike prices 23~65
L 107°
TolX termination tolerance on the current value
- . 107t
TolFun termination tolerance on the function value

Source: The authors.
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Table 3

Optimal values of © and \ under the gamma randomisation (Note that we can only compare the RMSE with the
inverse gamma randomisation for fixed T, but we cannot compare the RMSE across different values of T because the
sample size differs across maturity times)

T N, 0 A RMSE Time
0.008 33 0.095 0.575 0.041 71.194
0.027 33 0.108 0.334 0.059 91.963
0.044 35 0.176 0.171 0.070 8.189
0.066 19 0.405 0.104 0.083 1.932
0.085 15 0.214 0.215 0.159 3.123
0.104 15 0.087 0.720 0.295 40.699
0.123 24 0.193 0.228 0.121 5.902
0.219 32 0.153 0.276 0.162 15.721
0.373 31 0.369 0.089 0.169 4.230
0.468 29 0.322 0.105 0.173 5.593
0.622 24 0.482 0.067 0.175 3.156
0.795 17 2.669 0.009 0.184 1.989
1.216 16 3.245 0.007 0.186 1.837
1.466 14 2.070 0.012 0.227 2.087
1.792 17 11.021 0.002 0.173 2.154

Source: The authors.

16



Option Pricing under Randomised GBM Models

Table 4

Optimal values of © and A under the inverse gamma randomisation (Note that we can only compare the RMSE with
the gamma randomisation for fixed T, but we cannot compare the RMSE across different values of T because the
sample size differs across maturity times)

T N, 0 A RMSE Time
0.008 33 0.719 0.002 0.032 6.087
0.027 33 0.827 0.002 0.051 3.460
0.044 35 0.877 0.003 0.062 3.569
0.066 19 1.227 0.014 0.079 2.332
0.085 15 0.885 0.005 0.147 2.107
0.104 15 0.672 0.002 0.280 2.533
0.123 24 0.923 0.006 0.106 2.788
0.219 32 0.799 0.003 0.135 3.897
0.373 31 0.979 0.006 0.147 2.903
0.468 29 0.926 0.005 0.141 3.787
0.622 24 1.091 0.009 0.153 3.789
0.795 17 2.406 0.035 0.181 2.338
1.216 16 2.962 0.048 0.183 2.697
1.466 14 1.861 0.024 0.217 2.310
1.792 17 8.016 0.155 0.173 3.485

Source: The authors.
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Table 5
Optimal values of O, G and P under the SABR model (Note that we do not display the RMSEs here because the units
associated from the SABR model is different from the randomised GBM models)

T N, o o 0 Time
0.008 33 21.729 2.994 —-0.502 0.435
0.027 33 10.616 3.643 —0.560 0.574
0.044 35 7.711 4.204 -0.619 0.353
0.066 19 4.691 6.793 —0.465 0.329
0.085 15 5.040 6.239 -0.610 0.341
0.104 15 5.967 5.473 —-0.704 0.344
0.123 24 3.633 6.119 -0.570 0.337
0.219 32 2.916 5.424 —0.604 0.360
0.373 31 1.895 5.701 —-0.535 0.159
0.468 29 1.631 5.680 —0.385 0.392
0.622 24 1.147 6.256 —0.341 0.378
0.795 17 1.001 6.032 —-0.425 0.359
1.216 16 0.673 6.272 —0.242 0.371
1.466 14 0.782 5.940 -0.154 0.303
1.792 17 0.467 6.371 -0.058 0.331

Source: The authors.
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Figure 3.BS implied volatility of a European vanilla call option under the gamma randomisation
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Appendix
A.1 Proof of the Exact Pricing Formula with Integer-valued Shape Parameter
Let us take A(S;)=1, 5> xywith K >0, where 1, is the indicator function of some event A .By (2) we

have the following risk-neutral condltlonal probability that the asset price is above the strike K at
the time 7 :

) m—Evr _m—lvr
P, s(S; > K)= /\/ u,,(dv)= erfc

2 |u,
\/V_ o, \/m Hv( V),

where ¢rfc is the complementary error function. We state another useful integral formula (see

Prudnikov, Brychkov, & Marichev, 1986, Eq. 2.8.9.7):!

B | Th1(c2 + p)V/* nok 2 K2
J x”e"’xerfc(m/;+i}dx=—2(ﬁ)l {1{b<0}+—| e +p) ) Y zb
0 Jx Jn “ R\ +p

X[sgn(b)K, _ 1/2(2|b|\/c +p)- \/7 k+1/z(2|b|\/C +p)l},

8)

where sgn is the sign function with sgn(0)=1. We can use (8) to obtain analytical formulas for the
randomised processes in the case with integer-valued 6 = e N . For the randomised G process, we
have:

N dml (a8 1( 2lm| ‘
P, (S > gy=1 _M( ) em?
1,5 (87 )= Loy r \ a Zkl NNy

)
|m| N8+t /Y |m| N8+t
X Sgl’l(m)Kk 1/2 Kk+l/2
2 I ) B PNV
For the randomised IG process, upon changing the integration variable, we have:
~ (m* + ZM)I/ 4 1 ‘
Prs(SFCM > Ky ="+—"=7 2—[ J
2\/E k=0 K! 2\m +27\,‘C (10)

X

X m? + 2\t m__ m? + 2\
k=172 ) + m k+1/2 —2 .

. . . e () . .
Now, we consider the risk-neutral conditional probability P =P "under an equivalent martingale
measure with the asset price process {S,},5;as the numéraire, where

1
Syl /B, m+—vt
~ ~ (SY>K)} 1 2
Pis(SY>K)=E,s| ——L——— |=—| erfc| ——==— |u,(av). (11)
T t S’ /B, 2".91) V2t H

! The integral formula is valid for R(p) > 0,|arg(c) |< % . Moreover, it would be valid for 9{(02 + p)>0if R(c)>0.
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where B =¢"” is the bank account value at the time 7. For the randomised G process
(§¢=My .neN,by using (11) and (8), we have:

~ s+ \t L2 2lm )
P SG(n,)») >K)=1 _M( ) efm/2 Il Dl Rl
t,S( T ) {m>0} 2\/; i \/H (—8+7»T
im|B+at) | m| B+ AT (12)
x| sgn(mK, _,»| — - Ky s |l

2 Um 8+t 2 I

By substituting (9) and (12) into (5), we obtain (6). For the randomised IG process {S/°""} _
ne N, by using (11) and (8) we have:

N =R\ odm? + 20

% m? + 2\t m_ m? + 2\t
k-1/2 D) _m k+1/2 ) .

P (m*+2A1)4 = AT k
Pis (S;G(”’M >K)y=1--—"2 g2 [—J

13)

By substituting (10) and (13) into (5), we obtain (7).
A.2 The Exact Pricing Formulas for ATMF Options

The price of an ATMF (i.e., m=1In(S / K)+rt=0) European vanilla call option under the GBM model,
with variance randomised according to the probability measure p,, , can be expressed as:

Crvz0) = erf[%j w, (dv).
1%

Where erf is the error function. We use the above equation to derive the pricing formulas for ATMF
options explicitly under the gamma and inverse gamma randomisation for shape parameter 9 R, .

Proposition 1 The price (divided by spot S ) of an ATMF European vanilla call option under the
gamma randomisation is:

R r(e+;) g ¢ | g
C 0)=1-—2 [ 2| F(0,0+=:0+1,——),
o) (T,0) '_fcl“(6+1)(7ﬂ) Fi( 5 M)

where | F, (a;bh;z) is the generalised hypergeometric function.

Proof

We first make a note that the incomplete gamma function can be expressed in terms of the Kummer
function of the first kind.i.e.,

1(0,x)=0"'x* |F(6;0+1;-x).
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Hence, we have

0
-~ 1 8 il 8y 0-1/2 -
C .,0)=1-—| — F|6,0+1;—— Ydy.
G(e,l)( ) \/EF(6+1)(7UC) J‘O 1 1( thy e y

And an integral representation of a generalised hyperbolic function is:?
Gys...,a, 1 = a0y a,...,a,
F 2= s0 e F ;28 |ds.
el "(bl,...,bq ] F(ao)-[o ? "{bl,...,b ]

From the integral representation above, we obtain the final expression.
Proposition 2 The price (divided by spot § ) of an ATMF European vanilla call option under the in-
verse gamma randomisation is:

( j 133 At
c 0 S22 M
166)(%,0) = \/ o T1(0) 12(2’2’2 ’8)
. r( ej
+(Ej _\2 F (e 0+1,0+4: M).
8 2

Jar@+1) )
Proof
We first make a note of an integral representation of the Kummer function of the first kind
1
1F1(a,b,c)= l—‘(b) J cu a 1(1 u)baldu
T'(@I'(b—a)’o

Hence, we have

~ 7 A\ -
CIG(e,)\)(T,O)=m(%) J‘Oue/z 3/4Ke_1/2 % i

Now use the fact that modified Bessel functions of the second kind can be expressed in terms of
generalised hypergeometric functions.i.e.,

-0 2 2
Ke<x>=@[§] FG-0+1 )+ “29)(2) F0+15).

Another integral representation of a generalised hyperbolic function is:3

dy,...,d 1, _ —a— a,...,a
p+qu+l ’ P;z ZLJSO 1(1_S)b0 ot qu 1 p;ZS ds.
bys-.sb, T(a, )T (b, —ay) 70 b,....b

From the integral representation above, we obtain the final expression.

2 The integral formula is valid for R(z) <1,R(a,) > 0.
5 The integral formula is valid for R(b,) > R(a,) > 0.
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1 Introduction
In complete markets, every contingent claim is
replicable in the class of self-financing strate-
gies, and its price is unique. However, there is a
whole range of arbitrage-free prices in incom-
plete markets or in markets with constraints.
The minimum price that guarantees no under-
hedging at maturity is equal to the supremum of
this price range. The resulting strategy is known
as superhedging (see, for instance, El Karoui and
Quenez (1995)). An investor can choose to stay
within the boundaries of perfect hedging and
completely eliminate potential risks by engaging
in superhedging strategies. But the cost of such
a strategy can be too high to be implemented
successfully. A viable alternative is to accept the
possibility of a shortfall — the difference be-
tween the payoff of the contingent claim and the
replicating portfolio at maturity. This approach
is usually exploited when there are market con-
straints on the amount of capital that can be
used for hedging. It has practical benefits as reg-
ulators frequently require financial institutions
to use a certain amount of funds conservatively
to be able to meet their obligations. Still, the ex-
tra funds saved on hedging can be used more ag-
gressively in an attempt to earn an extra return.
Two main approaches have been considered in
the literature. The first one includes maximis-
ing the probability of a successful hedge. One
of the earliest works is by Kulldorf (1993). The
author considered a stochastic control problem
with a single risky asset whereby an agent aims
to reach a particular value of fortune on a finite
time interval before first going broke. Browne
(1999) expanded upon the results obtained by
Kulldorf (1993). The author considered a market
setting with several risky securities and deter-
mined the optimal policy that maximises the
probability of reaching a certain level of wealth
before some fixed terminal time. Working in this
direction, Foellmer and Leukert (1999) trans-
formed the initial problem into the problem
when an optimal strategy maximises the prob-
ability of successful hedging. The resulting strat-
egy can be viewed as a dynamic version of the
Value-at-Risk (VaR) concept, a popular measure
of market risk exposure. The major drawback
of the approach is that the size of the potential
shortfall is not taken into account. Developing
the approach, Foellmer and Leukert (2000) pro-
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pose to minimise the amount of expected short-
fall where some loss function [ measures an in-
vestor’s attitude to the size of the shortfall. The
key idea is to use the Neyman-Pearson lemma
to modify the original contingent claim so that
the modified contingent claim can be perfectly
hedged. The authors show that the modified
claim’s perfect hedging strategy is also the op-
timal strategy for the initial minimisation prob-
lem.

The methodology proposed by Foellmer and
Leukert (2000) leaves some space for a choice
of the loss function to model the attitude of the
investor towards the potential shortfall. Value-at-
risk (VaR), being the most popular tool for meas-
uring market risk exposure by practitioners, is
a natural choice. However, the use of VaR was
severely criticised for failing to predict the scope
of the losses during the global financial crisis. The
most recent Basel III framework has signified the
major shift from VaR to conditional Value-at-Risk
(CVaR) as the encouraging measure of risk un-
der stress. According to the Basel Committee on
Banking Supervision (2016), the use of CVaR “will
help to ensure a more prudent capture of ‘tail risk’
and capital adequacy during periods of significant
financial market stress.” CVaR has some beneficial
mathematical properties that VaR lacks. First of all,
CVaR satisfies the four properties of translation
invariance, subadditivity, positive homogeneity,
and monotonicity, making it a coherent measure
of risk (Artzner et al., 1999)). In general, VaR does
not satisfy the subadditivity property unless the
joint distribution function of portfolio losses is
from a family of elliptical distributions. Another
advantage of CVaR over VaR is that it is a spectral
measure of risk (Acerbi, 2002)), meaning that it
directly relates to the notion of risk-aversion, an
essential concept in studying optimal consump-
tion problems through the use of utility functions.
One major drawback of CVaR is that it, in its origi-
nal form, is a hard risk measure to optimise with
respect to. According to Brutti Righi and Ceretta
(2016), “despite the advantages of ES, this meas-
ure is less frequently utilised than VaR because
forecasting ES is challenging due to its complex
definition”, where ES stands for the same concept
as CVaR. However, Rockafellar and Uryasev (2000)
showed that an intrinsic relation between the two
risk measures exists and developed a methodol-
ogy for optimising an investment portfolio with
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respect to both VaR and CVaR simultaneously. The central idea is to introduce an auxiliary function
F through which VaR and CVaR can be expressed. The properties of convexity and continuous dif-
ferentiability make the function F “well-behaved” for optimisation tasks. Melnikov and Smirnov
(2012) applied the ideas of Foellmer and Leukert (2000) to the case where CVaR represents the loss
function / that models the attitude of an agent to risk and considered the following dual problem:
minimisation of CVaR when the initial capital is bounded from above, and minimisation of hedging
costs subject to a constraint of the amount of CVaR. The authors further used the representation of
CVaR as in Rockafellar and Uryasev (2000). The explicit results were obtained within the framework
of the Black-Scholes market with a single risky asset.

This paper aims to take a step in the direction of generalising the results obtained by Melnikov
and Smirnov (2012) and consider the problem of CVaR-based option pricing within the context of the
Margrabe market model with two risky assets. The option type of interest is a plain vanilla spread
option. Spread options are broadly used and appear in a wide range of financial markets: as crack
spread option in energy markets, as credit spread options in fixed income markets, and as options to
exchange one asset for another in equity markets (see Margrabe, 1978; Fischer, 1978). The problem
is further complicated in several aspects. For example, a non-trivial aspect of pricing such options
requires knowing the probability distribution of the difference between log-normal random vari-
ables that do not admit a satisfactory theoretical expression. Hence, some approximation methods
are necessary. In particular, the paper utilises the approximate spread option pricing methodology
proposed by Bjerksund and Stensland (2006) and an approximation based on the assumption that
the difference between two log-normal random variables is normally distributed. Furthermore, CVaR
is chosen as the measure of risk to make the paper’s results easily applicable by practitioners in the
industry.

2 Preliminaries and Existing Approximating Methods
Let (Q,F,F = (f (t)),ZO,P{) be a standard stochastic basis with filtration F () that satisfies the usual
conditions, and F(0)={Q,&}. Assume that 7 is the terminal time for all the contingent claims
traded on this market. Then the dynamics of the two stock price processes S, = (S, (¢):7€[0,T]) and
S, = (S2 (t):rel0,T ]) are assumed to satisfy the following stochastic differential equations (SDEs):

ds,(t) =S8, (r)[wdt+odw(1)],

(D
ds, (1) =S, (1) mydt+0,dW,(r)],

where W, =(W,(r):te[0,T]) and W, = (W, (t):1€[0,T]) are standard Brownian motion processes
with correlation coefficient p.

The original Margrabe market model only assumed the existence of two risky assets and no bank
account. Therefore, we take all the stocks traded in this market as already discounted.

We further assume that the market is arbitrage-free and complete and introduce a unique equiv-
alent martingale measure Q via the Radon-Nikodym derivative:

d
Z(T)= _Q_
dp
We say that measure Q is equivalent to measure P if the two measures agree on the sets of
measure 0, i.e., if

P(w)>0<0(w)>0.
The process Z = (Z (t) te [O,T ]) takes the following functional form (see, for instance, Melnikov
(2011)): 2
Z(r)=exp| O, (1)+ 05 (1) -1 |, )
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where
0, _ Oip =05l ,
0,0, (1 —p2)
0, = G,1P—G M, ,
0,0, (I_Pz)

oy =07 +05+2p0,0,.

Under the risk-neutral probability measure Q, the dynamics of the two assets satisfy

ds, (1) =S,(t)o,dWe(r),
B 0 3)

ds,(t) =S8,(t)o,dWy (1),

where W2° = (WIQ (t):te [O,T]) and W2 = (W2‘~) (t):te [O,T]) are, according to the Girsanov theorem

(Shreve (2011)), standard Brownian motion processes with correlation coefficient p. We can rewrite

the process Z under the measure Q as follows:

o2
Z(’) = eXp[‘lelQ (t)"' ¢2W2Q (t)_(%"‘ 0,6, + ¢292] ]s “4)
where
6, =L,
G
A
0,=—=.
2 s,

The general payoff function of a spread option is of the following form:
[S,(T)-S,(T)-KT", (5)
where K is a deterministic strike price. The exact pricing formula for the special case when K =0

was determined independently by Margrabe (1978) and Fischer (1978). The price of such a contin-
gent claim is given by

p=5,(0)®(d)-5,(0)@(d,), (5)
where ln(Sl (0)]+ 2T
o Ms0)
1 - G\/T )
d, =d,-oVT,

_ 2 2
c = \/0] +05-206,0,p,

and ®(x) is the standard normal cumulative distribution function (CDF). To avoid ambiguity, we will refer
to the special case of equation (5) as an option to exchange one asset for another one; and as a spread
option otherwise.

However, it is generally accepted that the probability density function (PDF) of linear combinations of
log-normal random variables does not have a closed form. Approximations of the distribution of sums of
log-normal random variables exist in the literature; see, for example, Mehta et al. (2007), Cobb and Rumi
(2012), Hcine and Bouallegue (2015). Less is known about the distribution of the difference between cor-
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related log-normal random variables. Lo (2012) proposed the Lie-Trotter operator splitting method and
found that a shifted log-normal process governs the difference between two log-normal random variables.
A more recent work by Gulisashvili and Tankov (2016) considers the tail behaviour of the distributions of
linear combinations of log-normal random variables explicitly. The results of the paper allow approximat-
ing the probabilities of tail events directly. The authors further provide insights into how these findings
can be applied in the domain of risk management.

Thus, only approximate pricing formulas for equation (5) exist. Carmona and Durrleman (2003) provide
a thorough overview of spread option pricing methodologies. However, while most of the approximations
to equation (5) that exist in the literature provide accurate estimates, these are not always easily transfer-
able to the domain of risk management due to their complexity. For the purposes of this paper, we will
work around the idea of approximating the difference between two log-normal random variables using a
normal distribution. According to Carmona and Durrleman (2003), “computing histograms of historical
spread values shows that the marginal distribution of a spread at a given time extends on both tails, and
surprisingly enough, that the normal distribution can give a reasonable fit.” It allows us to price an option
with a payoff as in equation (5) in the approximate form, similar to equation (6). Consider the difference
between the two stock prices at maturity:

2 2

S, (T)-5,(T)=S5, (0)exp|:—%+glu/lQ (T)}_ s, (O)exp[— GET

+02W2Q(T)}- (7)

The above expression represents the difference between two log-normal random variables distri-
bution of which is not log-normal and generally has not been determined. By applying Taylor series
expansion to the exponents,

$i(T)=5,(T)=5,(0)=5,(0)+5,(0)5, =5, (0)z, +5, (0) X, =5, (0) 3, 2. 8)
n=2 """ n=2 """
where
2 2
Z :—012T+GII/V1 (T)~N(—61T, fT],
osT ol
o == —to W (T)~N|-—2-,05T

Equation (8) represents a normal random variable plus an error term in the amount of

oo oo

S (0)2%—52 (0)2% . The price of the option with a payoff as in equation (5) can then be ap-

n=2 """ n=2 """

proximated as follows:

p=5,(0)0(d,)-S,(0)®(d,)- K®(d;), &)

where T
d, :_K_m"‘czpzﬁs
d, _ —Kc—m ’

o - [Sl (0)o,-S, (O)Gzp]ﬁ
1 o )

- [5,(0)5,p—5,(0)c, NT
2 - )

o
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and where S, (T)-S,(T)=y~ N(m,cz), i.e., where the difference S, (T)-S,(T) in the indicator
function of the option, exercise event is replaced by a normal random variable y with mean m and
variance 2. We can use the moment matching technique to calculate the moments of y . Consider
the mean m,

m=E,[S,(T)-5,(T)]=
- E, {sl (O)GXp[—GfTT+GIVV1Q (T)H—EQ {Sz (O)exp{—“%TTszzQ (7 )J]
=5,(0)-S5,(0).

The corresponding variance is

o> =Var[ S, (T)-8,(T)]=5} (O)CXp(GlzT)+S22 (O)exp(ogT)—

2 2 2 2 2.2
25,(0)S, <o>exp[—["l ;"zjm "1“"2“2“1"2”}[& (0)-5, (0)P.

2

Let us call the approximation in equation (9) as a normal approximation.
The second spread option pricing formula that we are considering in the paper was proposed by
Bjerksund and Stensland (2006), where the authors consider the following expectation:

E, (Sl (T)_Sz (T)_K)[ wsry | | (10)
4”@»]}
where
¢ =5,(0)+K,
_5,(0)
S, (0)+K

The strategy to exercise the option depends on the price of the long asset at maturity exceeding
the power function of the short asset times a constant term. The price of the spread option is then
given by

p=5,(0)0(&)-5,(0)0(d;)- Ko(cs). an

where

c= \/612 ~26,0,bp+05b>.
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The authors showed, via numerical simulations, that equation (11) provides a very accurate lower
bound to the true price of the contingent claim. It offers better estimates than the widely used Kirk’s
approximation (1995). Let us call the approximation as the BS-approximation. The derivation of
equation (11) is in Appendix C.

To compare the two pricing formulas, we have estimated the prices by first varying the volatility of
the first stock o, and the time to maturity 7 parameters. The other parameters used are as follows:
S,(0)=105,5,(0)=100,K =5,6, =0.2,p=0.5. The results we present in Table 2 (refer to Appendix B).
Tables 3 and 4 show the absolute and percentage errors’ values compared to Monte Carlo simulations.
We can infer from the tables that the percentage errors vary significantly depending on the choice of
market parameters for the proposed normal approximation, whereas the BS-approximation provides
more accurate estimates. Lower rates of error are associated with a shorter time to maturity and the
volatility parameters of the two stocks being closer to each other. Both pricing methodologies provide
the lower bound on the option price compared to Monte Carlo simulations.

CVaR-hedging Methodology Adapted to Model (1)

Consider an F (T)-measurable European style contingent claim H e L' (Q), i.e. E, (|H |) < oo, with
the following payoff structure:

H=[S,(T)-S, (T (12)

Suppose that a financial institution has sold this option in the market and received H (0)= E, (H ),
the amount required for perfect hedging, given by equation (6). However, the institution decides not
to use all the proceeds from the sale of the option and thus is faced with the possibility of a shortfall
at maturity. The question arises: What is the best trading strategy the institution should follow to
minimise its expected shortfall if it uses CVaR as a measure of risk?

Denote by A the class of admissible self-financing trading strategies n = (V (0),&,1]), where V(0)>0
is the amount of initial capital, £ and 1 denote the number of units of the first and second stocks
held in portfolio, respectively, such that

V(t)z V(O)+j§(s)dS1 (s)+jn(s)a’S2 (s),Vt € [O,T],P—a.s. (13)

0 0

Strategy = is admissible if V' (r)>0,Vre[0,T],P-a.s.
Denote by 1 (0) the amount available for hedging such that ¥ (0)< H (0) . Then the amount of
shortfall L(r) associated with a given portfolio 7 takes the following form:

L(n)zH—V(T)zH—V(O)—]E(s)dSl (s)—].n(s)dSz (5). (14)

Fix a confidence level £, usually 90%, 95% or 99% for practical purposes. We will be minimising
CVaR, over all strategies © € A with the restriction on the amount of capital available, V/ (O) < V(O), i.e.
CVaR, (n)— min,

(15)

ne AV (0)< An(o).

Denote by A 17(0) the set of all admissible self-financing strategies that use no more initial
capital than V(O . Let us introduce an auxiliary function F as follows:

1 "
F, (n,z):z+nE[(L(n)—z) ] (16)
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According to Rockafellar and Urysev (2000), CVaR, (n) and F,(n,z) are interconnected through
the following nice property: function F, (n,z) is finite and convex with respect to z € R, and

CVaR, (1t)=1}1€%1F£ (m,2). 17)

Moreover, minimising CVaR, (n) over all strategies n e A(I?(O)) is equivalent to minimizing
F, (m,z) over all (n,z)e A(V(O))x]R :
in CVaR = i F .
ner,?(%/r(lo)) % <TC) (n,z)erjl(ll/r(lo))xR £ (TC,Z)

We arrive at the following equality:

. NN R S
nerfltl(%))CVaRﬁ(n)—r?eﬁl{nerjl(%}%o)){z+1_£E(H V(T)-2z) }} (18)

The expression in equation (18) represents a new optimisation objective. Let us define an auxil-
iary function ¢(z) in the following way:

1
¢(z)= min |z+——E(H-V(T)-2)" |, 19
(Z) neA(&(o))[Z 1-L ( ( ) 2 } } (19
and rewrite equation (18) in terms of the new function c(z) as follows:
min CVaR,(w)=min . 20
neA(?(O)) a L( ) zeR C(Z) ( )
Let the minimum value of the function c(z) for each z be achieved using strategy

(<) =(7(0.).8(:).1(2)):

We then have: )
min E(H -V (T)-z2)" = E(H-V (T,2)-2)",

neA(V(O))
where

V(T,z)zV(O,z)+}~ (5,2)dS, (s)+ |7i(s,2)dS, (s)

O —y

Suppose that the global minimum of the function c(z) is achieved at the point 7, i.e.,
mglc(z) =c(2).
zZ€E

Then the optimal solution to the problem of CVaR, minimization over all r e ,4(17(0)) , setin
equation (15), is the strategy

7(2)={V (0.2).£(2).7(2)}-
Now, according to equation (17), we have:
CVaR, (fc) = C(Z). (21)
It follows that if we can find the strategy & in an explicit form, then the problem of CVaR,

minimisation will be reduced to the problem of minimisation of the function c(z) . Observe that for
each z, the strategy 7 is a solution to the following problem
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EH-V(T)-2)" > min (22)
neA(V(O))

Let us note that
(H-V(T)-2)" =[(H-2)' -V (T)I".

Denote (H —z)* by H(z).Itis evident that H (z) is an F -measurable random variable, H (z)e L'(Q)
and H(z)=0.We can consider H(z) as a contingent claim. Equation (22) can be reformulated in
the following form:

E(H (z )" — min (23)
@V (1)~ min,

This optimisation problem can be interpreted as the problem of expected shortfall minimisation
over the strategy set 4(V (0)) of contingent claim H (z), which was solved by Melnikov and Smirnov
(2012). The optimal solution 7t = (V(O),&,ﬁ) of tpe problem of expected shortfall minimisation is the
perfect hedge of the modified contingent claim H (z)=§(z)(H —z)" or, equivalently, H (z)=6(z)H (z):

T

Ey(H ()| F(1)=V 0z,+j§szds +[ii(5,2)ds, (s),¥1 €[0,7], P-ass., (24)

(=}

where

¢(z)= [{Z}ﬁ@} +B(2) [{dP ) }

&(z)—inf{aEO:E [(H ) I{d,, }]sﬁ(o)},

17( )-E, [(H 2)" 17>H ]
B(2)= {dQ ()} '

Moreover, in the context of equation (21), the function c(z) admits the following description:

1 ~ N

(2)= z+_—£E[(1—<P(Z))(H—z) },z<z 25)
2,222
Equivalently,
()= ELH @A) <
72,222
where 7z is the solution to the following equation:

V(0)= EQ[(H —z)+]. (26)

3 Main Results: Extended Approximate Formulas
To find the price of the optimal hedge, in CVaR sense, or, equivalently, to construct a replicating port-
folio with the lowest level of CVaR, , we must first find 7z in equation (26). To do it, we will be using the
proposed normal approximation, and the BS-approximation described above. Once we have determined
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the unique value 2,we can minimise equation (25) numerically, using the Monte Carlo simulation
technique. Suppose that 7 is the global minimum of the function c(z) . Noting that the distribution of
Brownian motion is atomless, the problem is reduced to evaluating the following expectation:

@W(l)

Ey(H(2))=Eq| (8,(7)-5,(T)-2)" I{d,, 1 @7)
Depending on the chosen approximating method, the following two theorems provide the neces-
sary tools for constructing a hedge with the lowest level of CVaR, :
Theorem 1. Approximating the distribution of the difference between two log-normally distributed
stock prices as a normal distribution, the price p of setting up a replicating portfolio for a spread option
at any time t <T can be estimated as follows:

p :S1 (O)q)z (;153’1’93)_‘92 (O)q)z (;5253’2@3)—5‘1)2 (;3,;34)3), (28)

where

~ m_~

X1 = Gz+(51plﬁ,
;}l :IZ+°'1P4\/?,

)Aczzm;Z+02p2\/T,

)A’z = [%+02p5\/?,
-~ m=3
X3 = .
(0}

v =K,
~—(5,(0)5,~5,(0)op).
*/G_ (8,(0)o,p-5,(0),),

a—>b
P

pd, + ¢,

o

JT
(¢
NT

Py =

4=
o

b, +9,p

5=
o

[}
= 02 +02 +200,0,.
o T

¢
o T

O,

c] 1
(2¢+¢191 +¢292]T+1n[6(2>J
o, T ’

S,(T)=S$,(T)=v~N(ms?),

a= S()

(¢1 +¢2),

b=S, (O) <¢1 +¢2p)’

K=
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and @’ (x,,x,,p) is the CDF of the bivariate standard normal distribution with correlation p.

Proof. We want to find the price of the option with the following payoff

S50V L
dQ

Let us first consider the expression in the indicator function:

2
{L>exp{¢lWlQ (T)+¢2%Q(T)—[%+¢lel +¢292JT}}

a(z)

f_Jg\
QU
E
\Y%
M
—_~
AN
SN—
\_ﬁf—/
|

; )
7+¢e +¢ 0, |T+In N
_ ¢1mQ<T>+¢mQ<T)<[ 2 J a(3) .
o, T o NT
_fe<R),
where
we(r)
=——~N(0,1
€ T (0.1),
770 (T) — q)lI/VIQ (T);_ ¢2H/2Q (T) ,
0

o’ 1
04 9,0,+0,0, |T+In|

2 2 a(z)
- ST

_ OitbP—Ooly
clcz(l—pz)

o _ G,lp—0G4l,

2= 1— 2\’

6102( P)

G, =107 +03 +20,0,p,

o, =11,
O,

3

o

U,
0, =%,
2 o,

Replacing S, (7)-S,(T) by vy~ N(m,cz) , We obtain:
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do

=Ep [ Moy, } [ Miory! {MJ— KE, [1 (k)] {M}} (30)

2

_s (o)exp(_%JE ["‘Xp("W (r ))’{—v<—f(}’{e<k}}

= E, [(Sl (T)-8,(T)-K)1 {sl(r>sz<T>>K}I{‘”’>a(z>}}

2

_SZ(O)GXP(_GET] E |:exp(62W (M), K}1{e<k}] KEQ[[{_K_K}I{EJJ.

Consider the first term in equation (30):

2

S, (O)exp(—%} E, [exp (G1W1Q (T))I{—y<—1(}1{0<1€}:| -
(31)

2

S, (O)exp(—cl—;] E, l:eXp(_Zl)I{X<—K}I{Y<I€} }’

where
Z, =—0,W2(T)~N(0,0T),
X =—y~N(—m,62),
oW (T)+0,W5 (T)
Y = ~N(0,1).
0T o

To apply the two-asset lemma (see Appendix A) to the expectation term, we need to estimate the

correlation coefficients p, y,p,, and py, . Consider p,y,

Since ¥ ~ N (0,1),

Gyzcy =EQ<XY)

_ Q[¢1”4Q(T)+¢2%Q r), (T)]_ EQPIWIQ (z@q;wzQ(T) 5.(7)

-5y (0ew =5 | o Tl (7)o (resol o 1)

E, [q)lWIQ (T)exp(o, W2 (T))+0,W2 (T )exp(o,W,° (T))}
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Opening the brackets and calculating the expectations, the above yields:

o,NT o NT
S, (0) 2 (¢1P+¢2)_Sl (0) 1 (¢1 +¢2P)-
Gy Gy
To get the correlation, we need to divide it by 6,6, to get:
a-b
pXY = o ,
where
o T
a =5, (O) 20 (¢1P+¢2)a
0
o T
b =5,(0) 16 (0, +0,p)-
0
Now consider p, y,
_ O
Pzx = o0,
Since Z, ~ N (0,677,
o:x=Eo(Z,X)

_E, {G]W]Q (T)l:S] (o)exp{_“fTT+ . (T)]—Sz (O)exp[—céTT+ o W2 (T)

2

= (O)CXp(_%] £ [Glng (T)eXp(GlWlQ (T)ﬂ

GETJEQ[GIWIQ(T)CXP(GMQ ™)}

Opening the brackets and calculating the expectations,

6..=5(0)6;T-S,(0)o,0,T.

X

Similarly, by dividing by 6,6, we get the correlation:
JT
Pzx = 7(51 (O)Gl -5, (O)Gzp)'

Let us now consider p,, ,

2y

Gzlﬁy

Pzy =

Since both random variables Z, and Y have zero expectation,

)
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6., =Ey(ZY)
oW (T)+o,WL2(T
g, [-GIWIQ (r){ ) o | )H
0
Simplifying, we get:
+
y=- o qu)z .

0

We can now apply the two-asset lemma to equation (31) to get
2

Sl (O)CXP[— GlzT)EQ [eXp (_Zl )[{X<—K}I{Y<k}:|

(32)
= 5,(0)" (x1,71.p27 ):
where
x ~ S _F T 0, +9,p
M= +GlpZ]X\/T’ V= K+01ﬁpzly’ Pzx Z%(Sl (0)o, -5, (O)Gzp)’ Pzy 2_16—2’
p
2
i+¢e +0,0 T+ln(1)
2V2 ~~
a-b o, T B o T - 2 . a(z)
Pxy P =5,(0) s, (¢1p+¢2), b=5,(0) o, (¢1+¢2P), K= G¢\/T
Now consider the second term in equation (30):
o;T 0
S, (0)exp — E, [exp(csz (T))I{—v<—1<}l{e<k}} (33)
where
oW (T)+o,W2(T
Z,=-c,W2(T)~N(0,6/T), X =—y~ N(-m,c*), ¥ == (G_)(bﬁz ( )~N(0,1).

We need to estimate the correlation coefficients p, y and p,, . Proceeding in the same manner
as for equation (31), we evaluate the correlation coefficients to be as follows:

- g(sl (0)o,p=5,(0)0,),

__0pt0, .

Pzy
2 c

Pz,x

o

Applying the two-asset lemma,
2

S, (O)exp[—%] E, |:eXp(_Z2)[{X<—K}I{Y<k}:|

=5, (0)(1)2 (;CLJA’Qany),

(34)
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where

~ —

X2 =

~ - \/T N
+02pzzxﬁ’ yr=K+0\NTpZyy, Pzx z?(‘gl (0)o,p-S5, (0)02), Pzy =_¢1p5 %2
o

The last term in equation (30) is simply

where

,y.=K.
p V3

Combining all three terms, equations (32), (34) and (35), we get the stated formula in equation (28).

Alternatively, using the BS-approximation:

Theorem 2. Using the BS-approximation for the price of the spread option, the price p of setting up
the replicating portfolio at any time t <T can be estimated as follows:

P=5,(0)07 (31,3,p) = 5, (0) 02 (X2, 7,95 )~ 202 (x3,3,5), (36)
where

~

xi=K+op T, y=K+opNT, x2=K+0,pNT, yp,=K+0,p~T, x:3=K, y;=K

3

~ (o, —szp)ﬁ _ (clp—czb)\/? _ (0,b0,p+0,b9, - 0,0, —61¢2p)\/7
pl_\/z 20 02T [ 2,07 73T 2 2,2 ’
6,T-20,6,bpT +050°T \/GIT—20162pr+02b T G¢\/61T+62b T-20,0,bpT
S, (0
N s v S Y.L AR 1 W
o, o, c
c, 1 5,(0)) o 2,2
¢ 1 o, T o5b°T
—+0,0,+0 +In| —— | — - 2
[Z ) [ 2 1¢1 2(])2 a(z) [/Z ) 1’1{ a(g) J ) )
B NG N 2,200 ’
O, 6,T+056°T -2p6,6,bT

Proof. We need to estimate the following expectation:

The first indicator function has already been considered in equation (29); the term in the second
indicator function was considered in equation (45) of Appendix C. We can rewrite the above expecta-
tion in the following way:
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Eq|S(T)1,

< <i}! {Ezgf} ~Eo| S (T ] {ezsz} —KEo| It y] {ezsf} : (37)

We can apply the two-asset lemma to each of the three terms in equation (37). Before that, how-
ever, we need to estimate the correlation coefficient between €, and &,

Pec = E, WP (T)+0,WP (T)|[ 0,65 (T)-cW°(T) =
ae e o, T \/GfT—26102pr+6§b2T

_ (02b¢1p+(52b¢2 -0,0, _01¢2P)ﬁ
o, \/GfT +03b°T -206,6,bpT

bl

where we used the fact that
E[W*(T)|=Var[W (T)]=T,
and
E[W, (1)W, (7)]= Cor[ W, (1) W5 (1)) =p T

Combining this result with the results of equations (29) and (45), and applying the two-asset lemma
to the first term of equation (37),

Eg| S(T)1, . E}I{ ' = 5,(0)0? (1. 71.p5) (38)
where
;Cl = k-i—Glpl\/T,
3’1 =K+ 6194\/?’
0 (61 _(52179)\/7

o -20,0,bp T +020°T
(0200,p+ 0,00, =60, =6,0,p)VT

p3 = H
G¢\/GfT+G§b2T—26162pr
+
P, = Pt .
o

o

The second term of equation (37) evaluates to
Eq| 8,(T)1. k}l{e &} = 5,0 (%2.5.p). 39)

where

42



On Approximate Pricing of Spread Options via Conditional Value-at-Risk

.;CZ = K~ + G2p2 \/Ta
¥ = K+0,p T,
0, = (o,p—0,0) JT
’ \/GIZT— 20,0,bp T+0§b2T ’
O, +0p
Ps =—2 S Ly
0
The last term of equation (37) is
where
X3 =Kk,
5’3 = K

Combining equations (38), (39) and (40), we get the formula stated in equation (36).

The existence of closed-form formulas for estimating CvaR-optimal option prices, as per Theorems
1 and 2, allows constant rebalancing of the replicating portfolio at any moment in time ¢ <7, which
is vital for risk management purposes.

5 Numerical Illustration and Application to Regulatory Needs
To see how the methodology would apply to the real market data, we have downloaded the closing
price data for Apple Inc. and S&P500 index from 1st January 2013 to 28th March 2018, with overall
1319 observations. Having transformed the prices to logarithmic returns and having annualised the
returns, we obtained the following standard deviations: ¢, =0.24,6, =0.12, where subscript 1 refers
70 : :
—— Normal Approximation

—— Bjerksund & Stensland Approximation
60 A

50

40

30

CVaR

20

10

-10 I I L
0 0.2 0.4 0.6 0.8 1
Initial Capital

Figure 1. CVaR for varying level of initial capital at 99% confidence level
Source: The authors.
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Table 1
CVaR at 99% confidence level

CvaR
Capital Available, %
Normal approximation BS-approximation
0 68.9700 69.0788
10 26.0501 274378
20 18.9578 19.8209
30 14.4591 15.1719
40 11.1611 11.7549
51 8.4916 9.0196
61 6.2363 6.7189
71 4.2763 4.7194
81 2.5743 2.9413
91 0.9873 1.3326
100 0.0000 0.0000

Source: The authors.

to Apple Inc. and subscript 2 to S&P 500 index. The annualised returns are: p, =0.14,u, =0.11. An
investor expects to earn a higher rate of return on Apple Inc. to compensate for higher volatility. The
estimated correlation coefficient over the period was p=0.5068. We have standardised the initial
prices to be equal

S, (0)=15,(0)=78.4329

The institution has sold an option to exchange a single unit of S&P500 for the unit of stock of
Apple Inc. with an expiration date of one year from now. The price required for complete hedging is
determined via equation (6) to be equal to p=6.49. We estimate CVaR at 99%. Refer to Fig. 1, where
we plot the level of CVaR,,, for varying levels of the initial capital available as a percentage of the
arbitrage-free price.

Table 1 summarises the results of the simulation. We can see that the normal approximation
underestimates CVaR for all levels of initial capital available. It is an expected result given that the
normal approximation provides lower price estimates when compared with the BS-approximation. We
note that both approaches offer only an approximation to the true level of CVaR because there is no
exact pricing formula for equation (5).

We can further supplement our analysis by looking at CVaR-efficient portfolios from a regulatory
point of view. Suppose that a regulator in the market requires the member institutions to keep a
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1.4

0.2 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Initial Capital

Figure 2. The relative attractiveness of CVaR-efficient portfolio at 99% confidence level

Source: The authors.

certain amount of capital in reserves depending on the estimated level of CVaR. Let B be the neces-
sary amount of capital per unit of CVaR exposure. Denote by

A (V(0))=BCVar, (V (0))+7 (0) (41)

the total amount of capital to be kept in reserves provided that the amount of 17(0) has been used
for hedging purposes at the significance level £.Then the CVaR, of an unhedged position is A, (0).
Introduce the following ratio:

AV (0
e,= ‘_<)) (42)
A (0)

The ratio tells us the relative attractiveness of a CvVaR-efficient portfolio. Where ©, <1, engaging
in CVaR-efficient hedging allows the institution to use less capital to meet the regulatory requirement
as compared to an unhedged position and vice versa. We apply this line of analysis to our Apple Inc.
and S&P500 portfolio at a 99% significance level, and the results we show in Fig. 1.

The above figure clearly indicates that the higher the regulatory requirements, the more attractive
a CVaR-efficient portfolio is compared to a portfolio with no hedging. Also, the graph of the relative
attractiveness of the CVaR-efficient portfolio as a function of the level of initial capital used is U-shaped,
meaning that the relative effectiveness is more sensitive to changes in the capital employed in the
tails of the graph. The reader can clearly see this effect from Table 1. The concavity of the graph in the
markets with regulatory requirements means that we can optimise concerning the amount of initial
capital to be used to maximise the replicating portfolio’s effectiveness.

6 Conclusion
In this paper, we have investigated the problem of constructing CVaR-efficient portfolios under capital
constraints in the Margrabe market model setting. The two different spread option pricing formulas
used provided comparable results. However, neither of the two methods provides an exact solution
since no closed form PDF for the difference between two log-normal random variables exists to this
moment.
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APPENDIXES

Appendix A Two-asset lemma

Lemma 1. Let X ~ N(px,ci),Y ~ N(uy,cy) and Z ~ N(uz,ci) be three normally distributed random

variables with correlations Pxy>Pxz-Pyz. Then,

where

2

E[CXP(_Z) I{X<x}I{Y<y}i| - exp[—uz +%](D2 (;Ca JA”pXY )a

~

X =

X—U,

X

~

y
+GszZ’ y:

Hy

+6.Pyz

(43)

and ®* denotes the two-dimensional normal cumulative distribution function (see Melnikov (2011)).

Appendix B Comparison results for normal approximation and BS-approximation

Table 2

Spread option: value approximation. The different formulas are from top to bottom: Monte-Carlo simulation, BS-

approximation, the normal approximation

T
O,
0.5 1 3 5
4.8886 6.9092 11.937 15.372
0.1 4.885 6.9041 11.928 15.361
48399 6.8061 11.404 14.228
5.1504 7.2788 12.573 16.188
0.15 5.1447 7.2708 12.559 16.17
5.1124 7.1577 12.103 15.121
5.7911 8.1831 14.127 18.179
0.2 5.7833 8.172 14.108 18.153
5.7503 8.0437 13.445 16.897
6.7008 9.4663 16.327 20.99
0.25 6.6925 9.4544 16.305 20.959
6.6062 9.2315 15.358 18.908
7.7852 10.994 18.937 24.313
0.3 77771 10.983 18.913 24.277
7.7153 10.651 17.074 20.852

Source: The authors.
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Table 3
Spread option: absolute error

T
O,
0.5 1 3 5
0 0 0 0
0.1 -0.0036 -0.0051 -0.009 -0.011
-0.0487 -0.1031 -0.533 -1.144
0 0 0 0
0.15 -0.0057 -0.008 -0.014 -0.018
-0.038 -0.1211 -0.47 -1.067
0 0 0 0
0.2 -0.0078 -0.0111 -0.019 -0.026
-0.0408 -0.1394 -0.682 -1.282
0 0 0 0
0.25 -0.0083 -0.0119 -0.022 -0.031
-0.0946 -0.2348 -0.969 -2.082
0 0 0 0
0.3 -0.0081 -0.011 -0.024 -0.036
-0.0699 -0.343 -1.863 -3.461
Source: The authors.
Table 4
Spread option: percentage error
T
Y
0.5 1 3 5
0.00% 0.00% 0.00% 0.00%
0.1 -0.07% -0.07% -0.08% -0.07%
-1.00% -1.49% -4.47% -7.44%
0.00% 0.00% 0.00% 0.00%
0.15 -0.11% -0.11% -0.11% -0.11%
-0.74% -1.66% -3.74% -6.59%
0.00% 0.00% 0.00% 0.00%
0.2 -0.13% -0.14% -0.13% -0.14%
-0.70% -1.70% -4.83% -7.05%
0.00% 0.00% 0.00% 0.00%
0.25 -0.12% -0.13% -0.13% -0.15%
-1.41% -2.48% -5.93% -9.92%
0.00% 0.00% 0.00% 0.00%
0.3 -0.10% -0.10% -0.13% -0.15%
-0.90% -3.12% -9.84% -14.24%

Source: The authors.
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Appendix C BS-approximation
Consider the following expression:

=E,|S(T)I R E| Sy (1)1 b (44)
S|(T)2 C(S2(T)) - S] (T)Z C(SZ(T)) -
Eo((5:(7) | of(5:(7)))
-E,| KI
¢ 5,(7)2 C(Sz(T))b
EQ((Sz(T))b)
The term in the denominator is
b b obT b ob(b-1)T
E, ((52 (T)) ): (52 (0)) exp[_ 22 JEQ [exp(cszzQ (T))} = (52 (0)) exp[%}.
Let us now simplify the term in the indicator function:
b
S, (T 2 2.2
S(T)= L))b S, (o)exp[— G‘2T +o,W,° (T)] > cexp[— oAb, o,bW;? (T)],
Eo(5:())
2 212
ln(Sl (O)J— GlzT + 022 s 6 pw2(T) - W2 (T). (45)
c

Since
6,b W2 (T)-0W2(T)~ N (0,06{T -20,0,bp T +03b°T ),
the inequality in equation (45) is equivalent to e<d,,

where

[ S (0) _cfr+c§b2r

c 2 2
~N(0,1),d3=\/ - —
6,17 -20,0,bpT +050°T

0,bW2 (T)-o W2 (T)
JoiT -26,6,bp T +62°T

Consider the first term in the original expectation, i.e. equation (44),
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’T
Ey| S(T)1 =S, (O)GXpL—%JEQ [exp(GIIfVlQ (T))I{Egdz}} (46)

C(SZ(T))b

Eo|(s:(7)) )

S|(T)=

Applying the two-asset lemma to the expectation term,

2 f—
EQ[em(cm@<T>>f{esdl}]=exp(¥)“’[d* &

T o —20,0,bp T +02T |

which leads to

where

(61 - szp)ﬁ

d=d;+0pNT,p = > S
\/GIT—Z(SlcszT+62b T

Let us consider the second term of equation (44),

E,| S, (T)I } =5,(0)®(d,), (47)

where

(clp—czb)\/?

\/GlzT ~26,0,bpT+026°T

d, =d, +G2Pzﬁ, Py =
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Finally, the third term of equation (44) is simply
E, 1<1k 1 |=Ko(dy). (48)

Combining those three term, we get the BS-approximation as in equation (11).
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magnitude of sensitivity of the option price, to the change in the volatility.
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bnusoctb Moaenei bawenbe u CaMyanbcoHa
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AHHOTALUMUA

B cratbe npencraBneH MeTon CpaBHEHUS LieH eBPOMeNCcKMX OMLMOHOB, OCHOBaHHbIM HA MCMOMb30BaHMM BEPO-
ATHOCTHbIX METPUK, MPUMEHUTENBHO K ABYM MOAeNsM AnMHaMuKK ueH — bawenbe n CamyanbcoHa. B otanume
OT ApYruMx paboT Ha AaHHYO TeMy, pacCMaTPMBAKOTCA K1ACChl ONUMOHOB, @ UMEHHO €BPOMeNCKMe ONLMUOHbI
C QYHKLUMEN BbINAAT, yA0BNETBOPSOLWMX YCA0BMIO JIMNWKMLA, @ TaKXKe eBponenckmMe OnuUmMoHbl C OrpaHUYEeHHOM
dyHKuMen BbinAat. [N AaHHbIX KNAcCOB BbIOMPAKOTCA NoaX0AALLME BEPOSATHOCTHbIE METPUKN: MeTpuKa PDop-
Te-Mypbe, MeTprKa NoaHOM Bapmaumm n metpmka Konmoroposa. Mbl foKasanu, YTo MX BblYMCNEHUE CBOAUTCS
K BbluncneHuto W-dyHkumm JlambepTta B cnyydae MeTpuku @opte-Mypbe U K peleHnio HEKOTOPOro HeMHeN-
HOrO YpaBHEHMS B OCTaNbHbIX ciiydasax. CTaTMCTMYeckas oueHKa NapamMeTpoB MoaeNieil Ha COBPEMEHHOM He-
(GTAHOM pbiHKE YKa3blBaeT HA MOPSA0K BEMYMHbBI NOTPELUHOCTH, BKIOUAS BEIMYMHY YYBCTBUTENBHOCTM LLEHDI
OMLMOHA K U3MEHEHMIO NOKa3aTeNs BONATUIbHOCTY.

Kniouesvie cnosa: mopens bawense; mogenb CamyanbCoHa; LeHO0Opa3oBaHMe OMLMOHOB; BEPOSTHOCTHbIE Me-
TPUKM; YYBCTBUTENbHOCTb; BONATU/IbHOCTb
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1 Introduction
Description of Models and Motivation
for the Study
In this study, the simplest continuous-time fi-
nancial market models are considered. The
movement of prices (X,),., ) of an asset in the
market is described in the framework of the
Bachelier model (Bachelier, 1900), using the sto-
chastic Brownian motion process:

X =X,(1+or+0,W,),t€[0,T],#(1)
where (W,)IE[O,T] is the Wiener process,
oaeR,0,>0.

The model proposed by Samuelson! (1965)
uses geometric (economic) Brownian motion to
describe the price dynamics:

X =Xpexp[yi+o3W, |1 €[0,T],#(2)

where yeR,64>0.

In both models, the volatilities 6, and o are
chosen so that they have the dimension [time] /2
and the linear trend o and exponential trend y
have the dimension [time]™.

Hereafter, the prices considered are assumed
to be discounted, which is equivalent to a zero
risk-free interest rate.

The Black-Scholes (1973) and Merton (1973)
option pricing model is based on the Samuelson
model (describing price dynamics in the market)
and is the most popular in practice. Similarly,
for the options on futures Black’s (1976) pricing
model is based on Samuelson’s model.

Bachelier (1900) not only described the dy-
namics of prices but also built a model of option
pricing. However, Samuelson (1965) noted that
the stock prices should not be negative; thus,
Bachelier’s model has not been widely used in
practice. Nevertheless, for short-term options,
the Bachelier model can better fit the real market
data than the Black-Scholes—Samuelson model
(e.g., Versluis (2006)). Note that the Bachelier
model and its modifications have been applied
to modern works on mathematical finance. For
example, the Bachelier model and its modification
with an absorption screen was used by Glazyrina
and Melnikov (2020) for pricing life insurance
policies with an invested stock index option, and
Melnikov and Wan (2021) compared this model
with the Bachelier and Samuelson models.

An unprecedented event occurred on April 20,
2020, when West Texas Intermediate (WTT) crude
oil futures prices (the benchmark for U.S. crude oil
prices) reached negative levels (see CFTC Interim
Staff Report, Trading in NYMEX WTI Crude Oil
Futures Contract Leading up to, on, and around
April 20, 2020). Fuel supply has far exceeded the
demand due to the coronavirus pandemic. Due
to overproduction, the storage tanks were so full
that it would have been difficult to find room for
new oil if the future contracts had been brought
to delivery. Because the May contract expired on
April 21, market participants with long positions
did not want to take delivery of oil (which no one
needed at that point in time) and incur storage
costs and opted to lock in such large losses by
entering into offset deals that the prices turned
negative. As of April 22, 2020, the Chicago Mer-
cantile Exchange (CME) switched to the Bachelier
pricing model for the options on futures for several
energy commodities? to account for the possibility
of negative prices.

In this regard, it is interesting to compare the
prices of derivative financial instruments obtained
using the above-described models. Schachermayer
and Teichmann (2005) proved the following esti-
mation for the price difference of a call option “at
the money” with an expiration at the moment T:

(oNT).

0<Cy-Cs < = \/ﬁ

Here, 6, =05 =0 and C;,Cg denote the op-
tion prices in the Bachelier and Samuelson mod-
els, respectively. Both processes (1) and (2) are
diffusion processes; thus, the Bachelier and Sam-
uelson models are clearly close in case of small
(and equal) values of integral volatility
c B\/T =0 S\/T = 6+/T. Meanwhile, the Samuelson
model is close® to the Bachelier model with

a linear trend y+ %G2 )

Grunspan (2011) obtained an asymptotic re-
lation between implicit volatilities for normal
and lognormal models at 7 — 0 and compared
the sensitivities (greeks) for call options. The
differences in option pricing obtained using the
Bachelier and Samuelson models are detailed in
Thomson (2016).

Another question is for what values of 6 ,/T
and 64+/T models can be considered close? We
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are interested in the problem of comparing the
prices of a European option with an arbitrary pay-
off function f(-) that belongs to a specific class
of functions and depends only on the price X,

of the underlying asset at the time of expiration
T . For each of the models (1) and (2), there ex-
ists a single equivalent risk-neutral (martingale)
measure. The option price P(f,T) with payout
function f () and time to expiration 7 is deter-
mined as the mathematical expectation relative
to the corresponding risk-neutral measure*:

P(f.,T)=E f(X;).

The processes given by relations (1) and (2) are

martingales if and only if
2
o

o=0v=—3#(3
v=-7-#(3)

Therefore, the difference between the option
prices Py(f,T)and P(f,T) in the Bachelier and
Samuelson models can be expressed as follows:

By (£.7)= P (/.T)= B (X7 )~ B (X7 ) #(4)

where the process parameters are chosen ac-
cording to (3).

The estimate for the right part of (4) can
be obtained by calculating the distance in the
Fortet—Mourier metric between the distribu-
tions of random variables X2, X, in case of
Lipschitz continuity of the payoff function
f(-). If the payout function is discontinuous
but bounded (e.g., as in the case of a binary
option), the total variation metric can be used
for the estimation. However, the Kolmogorov
metric can also be used to compare the binary
option prices; the closeness of distributions
under the total variation metric is a very strong
assumption, and hence, the corresponding es-
timate is rougher (but applicable to a broader
class of payout functions).

To compare the Bachelier and Samuelson
models, it is interesting to find the optimal rela-
tion between the volatilities 6,6 . Optimality
is understood as the dependence between these
indicators that arises when minimizing the dis-
tance between X2 and X7 in (one or another)
probability metric d(-,).

In this paper, the Fortet-Mourier metric be-
tween random variables X2 and X, is calcu-
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lated and the formulae for the total variation
metric and Kolmogorov metric are obtained.
The dependence of volatilities that minimizes
the Fortet-Mourier metric between X2 and X,

. Using the probability metrics, the estimates

for (4) are obtained to analyze the effect of
model choice on option price. By constructing
confidence intervals for volatilities in the oil
market for standard and binary call and put
options, we evaluate the error resulting from
the approximate measurement of the volatility.

Notation and Definitions
Let § be a metric space with metric d (,) and
let us denote by M(S) the set of all signed
measures on S and P(S)c M(S) as the set of
all probability measures on § equipped with
Borel o -algebra.

Definition 1. Let us define a semi-norm in the
space Lip(S) of the Lipschitz continuous on S func-

tions as follows:
—|f(x)_/;(y)| S()eLip(S).

Il /ll;,=sup
X,y

Definition 2. In the space B(S) of bounded
measurable functions on S, let us define the norm

1/ 1ly=sup|f (x)

f()eB(S).

Definition 3. For S =R in the space St(R) of
piecewise constant functions with finite number of
jumps A,,...,A, , we define a semi-norm

||f||s,=i|Aj Lf()eSt(R).

The introduced semi-norm is a norm in space
St(R)/R.

Definition 4. By the coupling of two random
variables X u Y , we cqll’ a pair (X’,Y’)for which
the following is true X =X,Y =Y . For the monotone
coupling of real random variables X u Y with dis-
tribution functions Fy (), Fy (-), we call a pair of

(F' (). K ()).U ~u(0.0),

where F, is the distribution function of a random
variable X , which is defined as

Fy (x)=P(X <x),
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and F™' is the generalized inverse function of the
monotonically non-decreasing left-continuous
function, defined via the relation®

F’l(y):inf{xeR:F(x)Zy}:
=sup{xeR:F(x)<y},ye(0,1).

Let 3(-,) be a metric in the space of random
variables taking values in §, defined on pairs
of (X,Y) of random variables, with a common
probability space.

Definition 5. The minimal metric with respect
to 8(.,-) is the metric

A

8(X,Y)=inf {5(){', Y'): X°X, Y'iy}.

Note that ’8(~,~) is therefore a metric in the
space of distributions and does not depend on
the joint distribution of X and Y .

Let F be a set of measurable functions
f:8 > R.Then, for each signed measure u on
S such that flflldu|<°° for all f e F, the fol-

S

lowing semi-norm can be defined:

|| i ]lz= sup
feF

[rdn
S

Denote M, = {u e M(S)lpllz< oo}.
Definition 6. We can say that on M, the dual
semimetric if

dp (V) =llu-Vi .

In particular, for the probabilistic measures
Pr =M P(S),

dy (X,Y)=sup|Ef (X)-Ef (Y).

feF

Let (S,B) be a measurable space.
Definition 7. The total variation norm for a
signed measure W is defined as

I ||TV=sup{jfdu:fe B(S).II £ ll5< 1}.
S

Definition 8. A total variation metric is a prob-
ability metric

dpy (01.0,) =10~ O, Iy -

If distributions Q,,0, are absolutely continu-
ous with respect to the measure u and have Ra-
don-Nikodym densities p,(-), p, (-), then

dyy <Q13Q2) = J.|p1 (x)=p, (x)|u(dx) =

=2[(p,(x)- £, (X)) (dk).#(5)

where a* = max(a,0).
Definition 9. If S =R, then the Kolmogorov
metric’ is
dy (X,Y)=sup|Fy (x)-F, (x)).

xeR

Definition 10. The Fortet-Mourier metric® is

the probability metric
dpy (X.)= sup [Bf (X)~Ef (¥)

There is also an equivalent representation of
this metric:

dpy (XY )= min{Ed(X’, Y'): X°x, Y'iy}.#(6)

The proof of equivalence of the definitions
can be found in Rachev, Klebanov, Stoyanov, and
Fabozzi (2013).

It has been shown (e.g., Bogachev (2007)) that
in case of S =R, the minimum value in (6) is at-
tained on the monotone coupling

(F' (U).F' (U)).U ~u(0,1).

Remark 1. The Fortet-Mourier metric allows
one to derive an upper estimate of (4) in the case of
Lipschitz continuity of f(-), for example, if f () is
piecewise linear (which corresponds to the portfolio
of call and put options). It is also possible to estimate
(4) by using the total variation metric if the func-
tion f () is bounded. Even if the payout function is
neither Lipschitz continuous nor bounded (e.g., if it
corresponds to a portfolio of binary and call options),
it can most likely be represented as a sum of ones,
as in practice, the payout functions usually do not
grow faster than linear ones. The Kolmogorov metric
provides a more accurate estimate than the total
variation metric; however, it is only applicable to
piecewise constant payout functions corresponding
to a portfolio composed of binary options.

Definition 11. Lambert W function is a com-
plex-valued function W :C — C, defined as a solu-
tion of the equation z = W(z)ew(z),z eC.
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W () cannot be expressed in elementary func- !
tions. We are only interested in its two branches, 0= C
Wy(2) W (z),at ze (—e‘l,O) (Fig. 1), which cor- ] // Wo(2)
respond to the real solutions of the equation 8 \'\.\\
§T 21 \\\\
xe*=z,z7¢€ (—e"l,O). S -3 \\,\.:, W-1(2)
= N,
—4 \\
The definition and notation are taken from N
Corless, Gonnet, Hare, Jeffrey, and Knuth (1996). = '\\
2 Main Results R R T R T e
Let us show how one can obtain the estimates Figure 1.Real-valued branches
for (4) by using the introduced probability metrics. of Lambert W -function

Let, as mentioned above, P, (f,T),Ps (f,T) stand  source: The authors.
for the prices of European options with payoff
function f(-) and time to expiration 7 in the

Bachelier and Samuelson models, respectively. Then, the following estimates are true:
If f() € Lip(R), then

1Py (£.T)= Py (£.T)| < Sy iy (X2 X7 ).#(7)
It £()eB(R), then

1Py (£.T)= Py (£.T)| < f Ny dyy (X2, X3 ).#(8)
If £()eSt(R), then

1By (£.T)= By (£.7)| <Nl di (XE.X5)-2(9)

Indeed, the price of a European option is defined in the Bachelier and Samuelson models as a
mathematical expectation of the payout function relative to the risk-neutral measure:

Py (f.T)=Ef (X7 )P (£.T)=Ff (X7),
where the processes X,B,X,S are martingales, i.e., =0,y = —% .
Then,
1P, (£.T)= Py (£.T) :‘E(f(Xﬁ)—f(X*;))

1. In case of Lipschitz continuity of f (),

|y (£.T)= Py (£.T)| SIS M, Is”upl\Eg(Xf)—Eg(Xi )\ = f Wy dp (X7 X7
8 LipS

2.1f f(-) is bounded, then

[ ()25 (x) s ()

<

|PB (f.T)- Py (f’T)|:

S |y (0)= oy (<)etx =1L 1 iy (X7, 5.

Here, Py» (')’pr (-) denote the densities of random variables X2 X3 .
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3. The function f(-)e St(R) can be represented as

m

F(Xp)=f (=) + 200 (X ) S (%) = AT

j=1

For each function, f;(-) it is true that

<|a|d (X7.X7).

S 50
Jj=1

‘PB (f/"T)_PS (fJ’T)‘ :‘AJ‘ FX% (Kj)_Fx;? (K/
P () B (1) < S P (1, T) By (7,7l
=I1f Nl di (X7, X7)-

Note 2: If the payout function can be represented as
FO=A0+ A0+ LA () e Lip(R). £ () € BR). £, () e St (R).#(10)
then
[Py (£.T)= P (FT)| S0 Ay iy g (XEXE )1 Sy Wy iy (X2 X 4115 N i (XX ).#(11)

The representation (10) is obviously not unique. Moreover, f, () IS unnecessary as soon as any piecewise
constant function with a finite number of jumps is bounded. Nevertheless, a proper choice of functions
/(). £5() u £;() in expansion (10) can significantly improve the estimate (11).

The following statements provide methods of calculation of the metrics appearing in (7)—(9).

Finding dg,, (X X?) is reduced to the calculation of the metric between random variables
E~-N (ul,cl) and n~ E./\f (uz,cg) that have normal and lognormal distributions. The value of this
metric is given by the following theorem.

Theorem 1
Let & ~ N(ul,of),n ~ EN(uz,oz) Then, under the condition ln( . )
1

the metric can be found with the formula
ey (EM) =1, (2[c1>(k2)—c1>(kl )]—1)+2<s1 (0(k)=0(k,))+
+eXp|:|,L2 +72}(1 2[ (ky,—0,)-®(k —02)]),

where ®(-) is a cumulative distribution function of the standard normal distribution, ¢(-) is the density
of the standard normal distribution, and k, and k, are equal to

#(12)

If condition (*) is not satisfied, then

dpy (&)= _M1+eXp|:p'2 62} #(14)
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Corollary 1. When trends and volatilities are chosen such that processes (1) and (2) are martingales
(i.e., relation (3) is satisfied), the formula for the metric between distributions of the random variables
X2, X% can be expressed as

dpy (X7 X7 )=2X, (@ (ky)-@ (k) ]-[@ (k- 0,)-® (k - 0,)]
~[0(k) =0 (k). #(15)

where 6, =6 41,6, =04+t denote the integral volatilities, and k,,k, are calculated as follows:

The following theorem answers the question about the optimal relation between ¢, and o
minimize the Fortet-Mourier metric in the risk-neutral case.

Theorem 2
For fixed o,, the minimum of expression (15) is attained at

f 2
* 02 l_e 02

G, =

=— .
622+ln(1+\/1—e_°2)

For fixed o,, the minimum in (15) is attained at o, which is a solution of the equation k, +k, = 26,,
where k,,k, are determined from (16).

The calculation of the total variation metric and the Kolmogorov metric between X; and X; can
be reduced to solving a nonlinear equation. This result is formulated in Theorem 3.

Theorem 3 o2
LE~N (w07 ).n~LN (1y,03), and =Ly, === Then,

dry (&)= 2[(1:5()‘1)‘Fn (xl))+(F§ (%)= F, (x3))—(F§ (%)= F, (x2))},#(17)

dg (&,n):max‘Fé (%)= F, (%) #(18)

i=1,2,3

where x, < x, < x; are the roots of the equation

2.2
(x* - 2x)—(ﬁ)2(1nx)2 ~30lnx+1- 2122 —2ofln(ﬁj =0,#(19)
c, 4 o,

_ In(x)—
and the cumulative distribution functions have the form F, (x)= CD( x—H j,Fn (x)= d)[m] I

Corollary 2. According to Definitions 8 and 9,

X5 x3 X5 x5
do, (X2, X5)=d,,, | =L, =L |.d (X2, X3)=d | =L,=L|.
TV( T T) TV(XO Xo] K( T T) K X, X,
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. X7 2\ A7 05T _
In the risk-neutral case, =~ N(L GST)’X_ ~LN| - 5 05T |, and the metrics are calculated by
0 0

Theorem 3 by taking into account that 6, =6 ,T,6, =0T .

3 Proofs of Theorems
Proof of Theorem 1
The cumulative distribution functions of §,n are

Fa(x)zd)(x_ul J,Fn (@:q{mﬁm.

G

Then, their inverse functions can be expressed as

Fé_l (”) =i, +0,0™ (u),Fn_l (u) = Mo ()

As the minimum in (6) is attained on the monotone coupling, we obtain

dpy (EM) =B, +06,2)-e""7 | Z =07 (U) - N (0,1).

The expectation is considered here with respect to the measure P, induced by a random variable Z .
Let us divide the space of elementary events into three disjoint sets:

D, = {m ‘W, +0,Z > e“2+"22},
D, =lwiy, +0,Z < ],
D, = 0:u,+6,Z = e”2+°2z}.
As P(Dy)=0, P(Dy_D,)=lholds, and therefore,

dpy (&)= E[(Hl +51Z)_eu2+022:|1101 +E[e”2+c2z —(u, +61Z):|H1)2-

By definition, the set D, is either empty or comprises those o for which Z € (kl,kz) for some real
k,,k, as the graph of a linear function can lie above the graph of an exponent only within a finite
interval.

In case of D, =0, considering that the expectation of the lognormal distribution with parameters

) . o, .
u,,o; is equal to exp{u2 +7} , we obtain

2

dpy (&)= E[euzmzz — (b, + GIZ):I =-1 +exp{u2 +G—22}.#(20)

If D= {(o Ze (kl,k2)} , then as it is much more convenient to work with D, than with D,, we
eliminate the indicator I, . Using the formula

EXI, =EX-EXI,

for X =e"*” —(n, +0,Z), we get
2

dpy (&M) == + exp[uz +%}— 2E[ 7% — (1, +6,2) |1, .#(21)
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As P(D;)=®(k,)-®(k ), we need to calculate EZI, u Ee™’I,

To find the first moment of a random variable ZI,,, we find its Laplace transform
-AZ1 :
y(A)=Ee " =1-P(D)) FJ.GXP{ kx—?}dx=

= 1—P(Dl)+expp—22}[d>(k2 +0)-®(k +1)].

As the first moment exists, it is equal to

EZT, ==y’ (0)=0(k,)-0(k,).
Now, let us find

sty =L jexp{ ;}dx exp{ ;}[d)(kz—cz)—(b(kl—cz)].

Combining the above formulas, we obtain

dpy (EM) =1, (2[@(k,) - @ (K))|-1)+ 20, [0k, )- 0 (k;) |+

) (1—2[q)(k2 —0,)-®(k —(52)]).

To obtain the final result, it is necessary to calculate k,,k, and find the conditions under which
D, is nonempty. If D, is nonempty, then k;,k, are the roots of the equation

I, +0,x =exp| U, +0,x | #(22

. c ..

Now, let us make the variable replacement y = ——2(u1 + Glx),x S B Then, the equation is
1 6, 6,

transformed into

O, 0, )
—_—V=eXpil =)
G, G

c o
ye' =——2exp| U, — 1, —2}.#(23)
o L 0,

The right-hand side is negative, so (23) has two real solutions (i.e., D, is nonempty) only in the

o o

case of —ﬁexp{uz - G—z} >—e! (see the definition of the Lambert W ). Taking the logarithm of
1 1

this inequality, we obtain (*).

If condition (*) is satisfied, the roots of (23) are found using the W function:

c o
—w|_S2 %2
N 0[ s eXP{Mz g 5, D
c c
v, =W, (—G—?exp{pb -, G—?D
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By substituting these solutions into the inverse replacement x = Ay , we obtain (13), which

completes the proof of the theorem. o %

Proof of Corollary 1
If X,Y are random variables, it immediately follows from (6) that

dry (cX,cY)=|c|dFM (X,Y),ceR.

Thus, 2

ot
dry (XIB,XIS):XOdFM [1+GBW”eXp{_TS+GSW’D: Xodpy (€M)

2

ool
Here, we designate 5 =1+0,W,,n= eXp{_TS"‘ GSWt}- Clearly,

&~ N(u,07),n~ LN (u,,03),#(24)
2

ot
S 2 _ 2 2 _ 2
— O =031,06, =04t.

where pu, =1Ly, =-

Let us show that condition (*) is satigfied. Suppose that for some o, >0,5, >0, this is not true.
Then, through (14), dy,, (&,1)=0 (i.e., £=n). We obtain the contradiction with (24). Substituting the
parameter values into formula (12) of Theorem 1, we obtain (15) and (16).

Proof of Theorem 2
1. Let us fix 6, >0 and consider an optimization problem

dpy, (€,m) — min

o,;>0

From (15) and (16) and the continuous differentiability of W for 6,,6, >0, the function dy,, (E_,,n)
is found to be continuously differentiable with respect to o, at ¢,,6, > 0. Moreover, the values close
to zero and a very large value of o, are not optimal. Hence, the minimum point satisfies the neces-
sary condition

dd (ﬁ,n)
J0,

=0.

Substituting into (21) the martingale values of parameters and differentiating it by o, using the
Leibniz integral rule, we obtain

ddpyy (£, J o

a ky 2 ky
= —2£I(exp[—%+Gzz}—l—clz](b(z)dz = 2Jz¢(z)dz—

1 kl k]

2

c
—2¢(z)[exp{—72+62z}—1—61z) [e=2BZ1, =2[0(k)-0(k,)]-
Here, the term with substitution is equal to zero, as k;,k, are the roots of (22).

Thus, the point o, is optimal if and only if

0(k)=0(k;) & |k| =[k|-
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Let us show that the case k, =k, is impossible. Indeed, if , =k,, then from (15), dy, (€,1)=0;
that is, iin . We obtain the contradiction with
&~ N (1,07)n~ LN (1,,03)-
Thus, k, =—k,. From (16), we obtain

Wy (2)+W_, (2)=-23,

. c c
where we designate §=—%,7=——2

2
exp{—g—;—ﬁ}. Adding to this equation the definition of the
0, O,

O

Lambert W function, we obtain the system

Wy (2)+W., (z)=-28

Solving it, we determine

W, (2)=—8+/8> =(z¢%),
W (z)=-8-18"—(z¢’).
Hence, from (16)

o =~k =— 1-e.
1

Let us substitute the determined value of &, into (22)

1+\/1—e_°% = exp[—%;+&\/l—e_"% }

O

From this, we can easily express as

' _2
* 02 l_e 02

c,=— .
622+1n(1+\/1—e_°§ )
2. Analogically to the first point, we equate to zero the derivative

dd (&n)
00,

B) o,
=-2—F|exp| ——2+0,Z |-1-6,Z |, =
00, l: p{ 2 ° } : ] b

ky 2 ky
= —2J(z—Gz)exp{—%+Gzz}¢(z)dz = —ZJ(z—Gz)q)(z—Gz)dz =
k ky

ky—0,

=2 | ydo(y)=-2[0(k -0,)-0(k-0,)]=0.

k=0,
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From here,
k +k, =20,.

= |k2 —02| . Again, considering the impossibility of case k, = k,, we obtain

Proof of Theorem 3
From (5), we obtain

v (&) =2 (p: (x) = p, (x)) . #(25)

where set 4= {x 0 (x)>p, (x)} — is the union of intervals whose endpoints are the roots of the
equation
pe (x)=py ().

This equation has only positive roots as p, (x)>0, Py (x) =0 at x<0. Let us write it out explicitly
and transform it.

1 2 22
exp (x— i) _ 1 exp _(nx+cs§/) ;
G, 20 O, G,X 2(52
4
nx-+In| 22 | =L (6 < 2x1) Ly )+ odine+ 22 |
0, 201 2(52 4
o2 2 .2
2(5111’1X+2611n[6 ] <x2—2x) 1_—(11’1)6) _ 11’1)(?—6162;
S o, 4

2.2
(x® = 2x)~ (XY (nxy? ~302nx+1- 722267 (ﬁj =0.
o, 4 o,

Let us denote the left part of the equation by h(x) and find the derivatives of this function:

2
()= 2(x-1)- (S 2200,
) G, 2(-Inx) 3¢’
h (x)zz—((s—;)2 (xz ), le'

Equality 4’(x)=0 is equivalent to 2x(x—1)= Z(ﬁ)2 Inx+30; , which has exactly two roots for
0,
geometric reasons. Hence, the function 4(x) has two local extrema on (0,+). Let us denote them
by x,,x, and x; <x,.

As lim h(x)=—oo, lim i(x)=+e , the equation A(x)=0 has (0,+) at most three roots. As

x—0+ X—>oo

pe(x)>p,(x) at x<0 andat x>0 p; (x)> p,(x), when h(x)<0,set A can be represented as

A= (=0, x, )| (%,,X3)-#(26)

If the equation has less than three roots, consider x, = x;. Combining (26) with the integral rep-
resentation of the total variation metric (25), we obtain the required statement.

To find the Kolmogorov metric, consider the function g(x)=F, (x)-F, (x). As lim g(x)=0 at the
point at which the maximum of the modulus is reached, we have the equality g’(x) sz (x)=p, (x)=0.

The solutlons of thls equation are the roots of x,x,,x, obtained in (19). Hence,

dy (&m)= maX‘Ei —F,(x ‘ max‘F -F (xi)‘.

i=1,2,3 n
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4 Numerical Analysis
Calculation of the Fortet-Mourier Metric 2
The value of the Fortet-Mourier metric in 14
(12) cannot be expressed in elementary func- NI x;
tions. This is an expected result, which nat- _ |
urally arises when dealing with normal and = v
lognormal distributions: the distribution -21
function (I)() appears, for example, in the 3]

Black-Scholes formula (Black and Scholes,
1973). However, in (12) the Lambert W, which

is much less frequently used function than 00 05 10 15 20 25 30 35 40
®(-). Nevertheless, many mathematical pack- x
ages allow calculating the value of any of its Figure 2. Function graph h(-) at 6, =0, =1

branches, which simplifies the numerical cal-  sy;rce: The authors.
culation of the formula.

Calculation of the Total Variation Metric and the Kolmogorov Metric
Let us discuss here the numerical computation of the total variation metric.

Calculation dy, (§,m) Using Quadrature Methods

One of the approaches for the calculation of the total variation metric is the calculation (see (5)) of
the integral

2 (e () py ()"

using quadrature methods.
As

(e (%)= Py (X)" < (%),

and £~ N (ul,cs1 ) , we will approximate the integral by the proper one
1+3

j(pé = py (XD dx = [ (pg (x)= py (x))* dx.
1-8

As for x<0,
x J.exp ——|dt £ — I—e Xp| —— |dt =— Lexp _x_2 ,
\/21‘5 \2r 21X 2

the approximation error does not exceed

1-8 2
5] o [2 )
2 )dx = 2@ <=L |[Zexp| —— |- #(27
J-pi ( 61) 8 \n p[ 2612i| (27)
Now, let us estimate the accuracy of the integral calculation
1+8

J e () p, (<) e

1-8
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by using the trapezoidal method. The integrand function here is not twice continuously differentiable;
however, (26) indicates that it has no more than three break points. As the function is zero at each
break point, the integration error in the mesh section containing these points does not exceed 3M,A,

where
P (%)= py ()]

Combining this with the standard estimation for the trapezoidal rule (Samarsky and Gulin, 1989),
we obtain

M, = max
xe(1-8,1+9)

h*(28) ,
W< ———M,+3M 1,
12
where W is the error incurred in the integration calculations performed on a grid of size N, h= 2—}5

grid step, and M, = xe(rlng>1<+5) Pe(x)-p", (x)‘

As p, (x)=—¢( = ]considering ¢’ (x)=—x0(x), we find
1

: __x—l x=1) 1) (x=1)* (x-1

S

, . 1 5’
) e
1

max
xe(1-8,1+3)

<——, max
27I(513 xe(1-8,1+3)

Using p, (x)=—¢(lnx HZJ we can find

0,
. G,+d L odX)( L 3d(x) @(x)}-1
p"(x):_xi—cﬁ (). (%)= 0,x° o o, i c; ’
where we designate d(x)= lnx_—uz
0,

Let us assume that 1-0 >0, which will be true in practice as the values of volatilities are usually
small. Let us denote

d = max d(x)=max{

|ln(1—6)—u2| |1n(1+8)—u2|
xe(1-8,1+3) )

b
0, G,

Then,
max p'( )‘ 0, td +d
xe(1-5,1+9) \/EG (1-8?’
1 (d) +1
max 24—+ :
xe(1-5,1+3) ( )‘ V2o, (1-38)° [ 0, c; J

Combining the obtained inequalities, we find

3 2 * *\3
|‘I‘|SL2 %(1+6—2]+;3[2+£+(d )2+1J +
3J2nN? | o o, ) 0,(1-9) o, (o

L 128° 18 oytd
2Nt 6] 62(1-8) |
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Calculation of dy,, (€,m) using the Monte Carlo method

The same integral can be calculated using the Monte Carlo method, as

N G N O
l(pi(x)—pn(x» dx_i(l ” Bl pe (x)dx = [l . Bk

where the expectation is taken with respect to the distribution of a random variable & ~ p, ().
We simulate the independent random variables X,,..., X, ~ p; () and approximate the integral by

n X.
lZ‘Yi ,where Y, = 2(1—M)+ . The mean-square deviation in this case can be expressed as
hn i=1

143 (Xi)

I ¢ 1 )
E(ZZI,YI —dpy, (ﬁaﬂ))z =Var l:ZZYI } < -

i=l

Numerical Solution of a Nonlinear Equation
Let us now discuss the numerical solution of (19). Consider the case that has exactly three roots
(for cases with fewer roots, the algorithm will be similar). As in the proof of Theorem 3,

2.2
h(x) = (x2 _ 2x) —(ﬂ)2(1nx)2 _ 30121nx +1 _%_ 2012111[&}’
G,

O,
2
B (x)=2(x—1)— iy 20X 301
Gfl Xl X2
h//(x)=2+(i)22 H.X;_ )+3(521 .
o, x x

Equation 4”(x)=0 has exactly one root, which means that the function 4(z) has one inflection
point that lies between xl* " x; (Fig. 2), and therefore, it is concave on (O,xl* ) and convex on (x2 ,+<><>).

This ensures that Newton’s method for the root x; with an initial point xl(o) such that xl(o) <X,
converges to the root. For the same reason, Newton’s method will converge to root x; at the initial
point x§°) > x,.Root x, can be localized by the bisection method for [xl,x3:| and then calculated by
Newton’s method.

According to Samarsky and Gulin (1989), if h() is twice continuously differentiable in the neigh-

borhood U, (x*) of root x” of the equation 4(x)=0,and

w(x)).

=———<lm= inf |h'(x),M,= su
q 2m1 : XEU,(xt) ( )| 2 er,Ec*)

Then, Newton’s method converges to x°, and

‘x(k) —x'|<g¥! ‘x(o) - x*‘.#(28)

Thus, for convergence, it is sufficient to assume that in some neighborhood of the root, the second
derivative is bounded and the first one is strictly separated from zero.

At x> xl(o),
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1.0 4
S L R o302
M, <2+2(—) max |+ ,
o, (xl(o) )2 (x))? 0.8 \
and at the localization of the root, the minimum ~_*°]
of the modulus of the first derivative is attained  °
at one of the segment endpoints, where it can be 041
computed explicitly. Therefore, by partitioning the \
segment until g <1, we can achieve a guaranteed 021 o
rate of convergence (28).
012 0;4 0:6 018 le

(%1

Results of Numerical Calculations
The results of metric calculation and optimal  Figure 3. Contour lines dp, (§,M) and optimum values
values o,,6, for the Fortet-Mourier metric at 0,(0,),0,(0,) plots

2 Source: The authors.

6,,0,€(0,1),n;, =L, =—% are presented in

Figs. 3 and 4.

The contour lines show that the distances between random variables &,1 tend to zero as
6, = 0,6, — 0. This is because of the convergence of distributions &,1 to the Dirac measure as the
volatilities tend to zero.

Application of the Estimates to Certain Options
In this section and hereafter, when referring to processes (1) and (2), we imply that they are martin-
gales; that is, (3) is satisfied.

Estimates (7)—(9), as well as the formulas for the metrics, show that the significant parameters
determining the difference between the models are the integrated (or cumulative) volatilities, de-
noted by ¢,,0,.

The application of estimates (7)—(9) to some types of options is shown below.

Put and Call Options
The payoff function of a standard call option f (X;)=(X; —K)" is Lipschitz continuous with the
Lipschitz constant equal to 1. Therefore, from (7),

‘PB (f’T)_PS (f’T)‘ <dpy (XZ{;’X}Y): Xodpy (E»T])-

1.0 1 \ 1.0
0.8 1 0.8 1
0.6 1 0.6 1
S S
0.4 0.4 1
0.2 1 // 0.2 1
0.2 04 0.6 08 1.0 1.0

o1

Figure 4. Contour lines dp, (§,m) and dy (&)

Source: The authors.
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Let us use the data obtained by Bachelier (1900). 0.31
Consider an option with the time to exercise equal 0.2
to one month, for which the integral volatility

equals 6=, =5, = 0.008. Then, we find “: LJM J M »rU w N {l \/

“ 00
By (o) Py (£ T) 30109, 4(29)  Loon U M
-0.2
Exactly the same estimate is true for a put op- 03
tion.
It is also interesting to compare this estimate 041
with that obtained by Schachermayer and Teich- 1,@' 1_03' 1,06' 1,01' 1,@' 1,9' %,Qx' %,03' %,06'
mann (2005) for a call option “at the money” (i.e., LS S S S S S el e
for K=X,): Figure 5. Daily price increments
X063 Source: The authors.

0< P, (fo,T)- P (f,T)< .
s (feT)= By (feT) < 320
For the same value of ¢ on the right-hand side, we get =1.6-107 X,,. Of course, this exceeds the
accuracy of (29) by three orders of magnitude; however, the estimation with the Fortet-Mourier metric
allows us to work with a very wide class of payoff functions and therefore is a more universal method.

Binary Options
Consider a binary call option with payout function

fB,C (XT ) = MHXTzK-
Then, from (8),
‘PB (foc T)-Ps (fB,C,T)‘ < Mdy, (X£.X5).
Substituting the Bachelier’s data, we obtain

1Py (foc T)=Py(feoT) <6107 M.

As it was noted, the total variation metric provides less accurate but still acceptable estimate.
Let us also apply (9):

‘PB (fB,C’T)_PB (fB,C’T)‘SMdK (Xﬁ,X}g)zl.GlO%M.

The Kolmogorov metric gives a more accurate result, which, however, has the same order as that
of the total variation metric.

Estimation of Volatility Using the Oil Market Prices

Let us now try to apply the obtained estimates to the current data. For this purpose, it is nec-
essary to evaluate the parameters 6,,6, of models (1) and (2). Furthermore, we apply statisti-
cal estimation methods assuming that the data satisfy the Bachelier model or the Samuelson
model. For real market prices, the distribution of their increments or the increments of their
logarithms is poorly approximated by the normal distribution and the increments themselves
are not independent (e.g., the effect of volatility clusters occurs). These effects are considered
using time-series models with conditional heterogeneity (ARCH models) that allow to describe
the asset price behavior more precisely. In addition, the processes obtained using these mod-
els, with appropriate normalization, converge to diffusion ones (Gouriéroux, 1997; Th. 5.15).
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It can justify their application to the estimation of parameters of Bachelier and Samuelson
models. However, when comparing these models, we are interested in a rough evaluation of

the volatility®.
Consider price X, as the closing price for WisdomTree WTI Crude Oil from January 2017 to No-

vember 2018 (Figure 5). Let us consider dimensionless values
X
Y, =—Lt=0,1,...,n=335.
XO

According to the Bachelier model, the price increments AY, =Y, -V, , can be represented as
Ax, =0+ G AW, AW, =W, -W,_, ~ N'(0,1).

Thus, as the Wiener process increments are independent, we consider {Ax,} as a sample of random
variables having a normal distribution N (oc,c%).

The maximum likelihood estimate 6 for the standard deviation from the sample obtained from
the Gaussian distribution with two unknown parameters, mathematical expectation and variance, is

~ 1< —
S5 =\/;2<AY,—AY»2,
t=1

where

=

>
=
I

X |~
>
=

This estimate gives an approximate value for the volatility 5, ~0.0144 -
In the Samuelson model, the logarithm increments

A(InY,)=y+0 AW, ~ N(y,cé).
Estimating the standard deviation similarly, we obtain 65 ~0.0150.

Let us construct a confidence interval for the obtained estimates with confidence level ¢.For the
sample Z,,...,Z, obtained from normal distribution with two unknown parameters, the mathemat-

n (Z. —2n)2

1

ical expectation p and variance ¢, the random variable ZT has a distribution of y*(n-1)

i=l1

(e.g., DeGroot and Schervish (2011)). Therefore, to estimate the maximum likelihood ‘¢ of the scale

parameter ¢, we have
~2

Pl vy <n 3 <Yy (=%t (12) =Xt (1) =4

where y,_, () denotes the cumulative distribution function for the law y’(n—1). Let us choose

4 (1-¢ 4 (1+q
Yi= an—l (T)’Yl = Xn]—l (T)

then the corresponding confidence interval for ¢ is
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0.022 A
~/n ~|n
c /—,G — |
|: 'Y2 \/;:| 0.020 -
0.018 1
For the confidence level ¢=0.99 , we obtain X
© 0.016 1
the confidence intervals as follows:
0.014
6, €[0.0131,0.0160],0 €[0.0136,0.0166].#(30) 0.0124
The obtained results are consistent with the 1_@/' 1,@' q_oﬁl 1,@ 1,09‘ 1,«,\| %_0\,‘ %.&I %,oﬁl
normalized values of Chicago Board Options Ex- I O A S S e
change (CBOE) Oil Volatility Index (OVX) over the Figure 6. OVX index

same period of time (Fig. 6). This index is calculated  s,1ce: The authors.
similarly to the volatility index (VIX) but uses oil
options. The OVX values should be interpreted as 5
implicit volatility (i.e., volatility calculated based on 2l
the observed option prices and reflecting appropri-
ate expectations of market volatility behaviour in
the next month). By contrast, the estimates derived 27
from the historical data & 3,8 s reflect the value
of realized volatility; therefore, the comparison of
these values is not entirely correct. Nevertheless,
our goal is to only estimate the order of magnitudes
G U Oy ; thus, it is acceptable for a rough evalu- -2
ation of “engineering character.” 3.

Now we apply the estimate (7) to the call op- 0.0 02 04 06 0.8 10
tion with the time to expiration equal to one
month (7 =30) and obtain Figure 7, Process trajectories X, X, .

X8, X2

Source: The authors.

|Py (fouT) = Py (oo T)| S dyy (X7, X7 ) = 4.7-107 X, (31)
For a binary option with 7' =30 and payout M, according to (8),
| Py (f3:T) = Py (f.T)| < Mddyy, (X7, X7 )= 7.9:107 M #(32)
If we apply (9), we obtain
| Py (f3:T)= Py (f3.T)| < Mdy (X7, X7 )= 2.1:107 M 3#(33)
Values of integral volatility
Let us find at what values of the integral volatility parameter the processes X, X’ remain “close”
to each other.
Using the Ito formula (e.g., @ksendal, 1991), we find that X?, X satisfy the stochastic differential
equations
dX? =c,X,dW,,
dX’ =c X aw,,

where for a small 7 value, the optimal relation between the volatilities is 6, = 0.
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Let us now calculate the variances:

VarX? = X203t [VarX? = X6 4%,

VarX’® = ( \/VarX S /

The variances and standard deviations depend only on the initial price and integral volatility.
Assuming X, =1,6 =0, =0, =1, let us model both processes (Fig. 7) such that they correspond
to the same Wiener process W,. At ¢ =0.2, the standard deviations and the processes themselves
begin to differ appreciably. This value corresponds to the integral volatility value ot =0.45.

For the options considered in the previous section, the integral volatility is approximately equal

to 6T =0.015-/30 =~ 0.082.

Option Price Sensitivity to Volatility
To validate the above-used estimates (31)—(33), the option price must change insignificantly for
small changes in volatility. This requirement is based on the fact that the value ¢ is never exactly
known in the model and its estimation leads to an error when calculating the option price. Let us
estimate the sensitivity vega (see Hull, 2012)
oP(f.T)
~ do

for standard and binary put and call options.
The price of a standard call option in the Bachelier model is calculated as

e X,-K X,-K
Py(forT)=(X, K)@(—GBﬁXOJmBﬁXOq{—GBﬁXO].

Its derivation has been provided by Schachermayer and Teichmann (2005). Similarly, the price of
a standard put option can be determined:

K-X, K-X,
P, (fP,T)=(K—X0)<I>[GB—\/7X0J+GB\/7XO¢(—0].

Let us find the vega coefficient for these options:

S i ol 25

96, o,NTX, )\ o3NTX, o, NTX,
X, - K X, - K
TX-o 0 _ 0
+OuNT X0 LGB\/TXOJ{ 0129\/7)(0} \/_q)(GB\/_XJ

as ¢’(x)=-x¢(x).

Similarly, for a put option,

AP, (f»,T) K-X, | 0P (f.T)
Yo, oV q{% th #(34)
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In the Samuelson model, the prices of standard put and call options are determined using the
Black-Scholes formulas:

1n)l((+;GST 1n)1((0—;o§T
Pi(fo.T)=X®| —*—~—— |-Ko| —"—~ |,
S ordT
ln)[((+;c5ST ln)l((—;csST
S N

The derivatives of these quantities obtained by ¢ are found to coincide. Denoting

ln&+lG§T In i—lozT
K 2 K 2

y+: 9y7: b
o T o T

let us find
0Py (fe.T) _ 9P (/,.T) lnX 1 lnAI/(O 1
o = e = H) ~AaT |Ko(n) AT | #(39

For binary call and put options with payout features,

ch( ) M]IX>K’fBP( T):M]IXT<K'

Accordingly, the price is determined as an expectation with respect to the martingale measure:

Py(foc)=B" fyc(Xy)= MP* (X, > K) M[l q)[GBﬁXoJ}

B K-X,
PB(fB,P)—MﬂD[—GB ﬁXo]’

X, 1

" ~0s7
Ps(fne) =B fuc (Xr) = MP* (X, > K) = M| —£—2—|
K 1, §
In—+_—oiT
X, 2

Py (fB,P)qu) Gs—\/?

From this, we find

aPB(fB,C’T) BP fBP’ K-X,
o o

70 - ln—
aPs(fB,CaT)_ 9Py (fBP’ )—M 1\/_ ( )

aGS B aGS - Mo GS\/T \/_
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Let us now estimate the order of the price calculation error that appears due to an inaccurate meas-
ure of volatility. This error approximately equals to |VAG| , Where V is the option vega coefficient and
Ac is the volatility measurement error. As options «at the money» have the greatest liquidity, their
study is of the greatest interest. Therefore, we further assume that K = X,,7 =30. From (34) and (35)
considering confidence intervals (30), we obtain that for the standard options with the confidence
probability, equal to 0.99, the error approximation of ‘PB (fo.T)-Ps (/. T )‘ calculation does not exceed

\/gXOmaX|AGB|+ﬁ¢(%8sﬁjXOmax|AGS| =7-107 X,

For binary options with K = X,,7 =30, according to (36) and (37), with confidence probability
0.99, the error approximation does not exceed

%Mﬁ¢(%8sﬁ)maX|Acs| ~1.8-10° M.

The resulting estimates differ from (31)-(33) by no more than an order of magnitude. Thus, with
the estimation methods used, the error associated with an inaccurate measurement of the volatility
can make almost the same contribution to the option price as a model change.

In this section, sensitivity estimation is obtained only for the options of a special form. When
applying similar methods for classes of functions, the accuracy of the estimation deteriorates con-
siderably. Let us estimate the vega coefficient in the Bachelier model: if we denote p() as the den-

) . X . . . .
sity of the random variable X_T’ then the price of the European option with payout function f ()
0

and time to expiration 7 can be found as Py(f,T)= Jf(yXO)p(y)dy.

—oo

Based on (1) and (3), the function p(-) can be expressed as p(y)= ! (1)[ -1 ]

o JT o, JT
After changing the variables z = % , we obtain
I 1
P, (f,T)= jf((1+ﬁz)Xo)0—¢[oi]dz.
oo B B

Let us differentiate the integral by parameter . The differentiation performed under the integral

is possible for all 6, >0, as, considering ¢, on each finite interval, the function ( f aap ]() will be
Op

majorized by an integrable function that does not depend on c,.

o7 )= f o)) - o & Jo e & e

Op B) Op B

- #(38)
= o [ {1+ Toue) 3 [o(e)+ ol o

For a bounded function f(-)e B(R),

9P, S”(fji]i[¢(Z)+zz¢(z)]dz=qillfllg #(39)

dG, B

(/.7)
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For the Lipschitz continuous functions, we will use the inequality
17 ()| <[ (X)L Ny =X -

Considering that

o oo

2 4

J- |x|d)(x)afx=E,‘[o|x|3 q)(x)dxzﬁ,

—oo

P,
e

Sci]i (‘f(XO)‘+”f”Lip \/TGB|Z|X0)|:(])(Z)+Z2(])(Z):|dzﬁ
b #(40)

21 (X)) 6
< . +mﬁxo||f||m,

According to estimates (39) and (40), as well as the confidence interval (30), the calculation error
Py(f.T ) for a standard call (put) option in money with 7'=30 does not exceed

6
V2n

\/%maxAc X, =210 X,,
| B| 0 0

and for a binary option with K = X,,,7 =30 does not exceed

AiM=0.22-M.

O3
The resulting accuracy estimates are inferior to those obtained using the exact representation
of the vega coefficient for these options by one or two orders of magnitude, which is expected as a
consequence of the universality of the estimates.

5 Conclusion

The approach based on the use of probability metrics enables the estimation of how much
the transition from one model to another affects the price of a European option with a payout
function from a certain class (represented as a sum of Lipschitz continuous and bounded func-
tions). This price change can be estimated by using an appropriate probabilistic metric and the
norm (or semi-norm) of the payout function in a suitable function space. However, the main
factor affecting the value of the estimation is the integral volatility, at a large value of which
the Bachelier and Samuelson models, which are essentially arithmetic and geometric random
walks, cease to be similar. As expected, the estimates obtained using the Fortet-Mourier met-
ric were the most accurate, whereas the use of the total variation metric and the Kolmogorov
metric led to similarly less accurate results. Moreover, the calculation of the latter two metrics
was reduced to the numerical solution of the same nonlinear equation describing the points of
intersection of normal and lognormal densities.

For the oil market, measures of realized volatility were estimated and confidence intervals were
constructed assuming that the models are true. By calculating the sensitivity (vega coefficient) for
standard and binary options, the error arising in the estimation of model parameters was found to
be comparable to the change in price when the model changed.
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Footnotes
! Apparently, Samuelson was the first economist to propose this modification of the Bachelier model. There-
fore, we use the term “Samuelson’s model.”
2Fora complete list of contracts, see CME Group Advisory Notice 20-171, 2020.
3This follows directly from the Ito formula.
4The assumptions made in Bachelier’s thesis (in an informal way) actually mean that the price process is a
martingale.
SThe term “coupling” is also used in random process theory in a different sense; see, for example, Sverchkov,
and Smirnov (1990).
°The generalized inverse function defined in this manner is also left-continuous. In this case, the random
variable F~! (U), where U is uniformly distributed on (0,1) random variable, has a distribution function
equal to F.
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"This metric forms the basis of the nonparametric criterion of the same name, which is based on the theorem
proved by Kolmogorov (1933).

8 Also, Kantorovich metric, Wasserstein metric, and Dudley metric. The variety of names can be explained by
many equivalent representations (for details, see Riischendorf, https://wwwhttps://www.encyclopediaofmath.
org/index/index.php?title=Wasserstein_metric=Wasserstein_metric).

9 An exposition of the statistical analysis concerning volatility has been presented by Melnikov, Volkov, and
Nechaev (2001), paragraph 4.3. In contrast to this study, we use the maximum likelihood estimation (instead
of an unbiased estimation with uniformly minimal variance) for the volatility, as such estimation for bijec-
tive transformation of the parameter reduces to this transformation of the parameter estimate. Among other
things, this is applicable when determining implicit volatility.
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ABSTRACT
Option pricing is one of the most important problems of contemporary quantitative finance. It can be solved
in complete markets with non-arbitrage option price being uniquely determined via averaging with respect to
a unique risk-neutral measure. In incomplete markets, an adequate option pricing is achieved by determining
an interval of non-arbitrage option prices as a region of negotiation between seller and buyer of the option.
End points of this interval characterise the minimum and maximum average of discounted pay-off function
over the set of equivalent risk-neutral measures. By estimating these end points, one constructs super
hedging strategies providing a risk-management in such contracts. The current paper analyses an interesting
approach to this pricing problem, which consists of introducing the necessary amount of auxiliary assets such
that the market becomes complete with option price uniquely determined. One can estimate the interval of
non-arbitrage prices by taking minimal and maximal price values from various numbers calculated with the
help of different completions. It is a dual characterisation of option prices in incomplete markets, and it is
described here in detail for the multivariate diffusion market model. Besides that, the paper discusses how
this method can be exploited in optimal investment and partial hedging problems.
Keywords: option pricing; complete markets; incomplete markets; non-arbitrage prices; hedging strategies;
risk-management
For citation: Vasilev, l., Melnikov, A. (2021). On market completions approach to option pricing. Review of
Business and Economics Studies, 9(3),77-93.DOI: 10.26794/2308-944X-2021-9-3-77-93

OPUTUHANDBHAA CTATbA

O mMeToAe pbIHOYHbIX MOMOJIHEHUMH
B 334a4aX OL,eHKM CTOUMOCTU OMLIMOHOB

Unba Bacunbes, Anekcanap MenbHUKOB
YHuBepcuteT AnbbepTbl, 9AMOHTOH, AB, KaHaza

AHHOTALMUA
3aa4a OLLEHKM CTOMMOCTM OMLMOHOB SIBASIETCS OAHOM M3 CaMbIX BaXXHbIX B 06/1aCTM COBPEMEHHbIX MaTeEMATH-
YyeckMx PUHAHCOB. B ciiyyae NonHOro pbiHka CTOMMOCTb OMLMOHA, UCK/0YatoLLas apOUTpaxk, MOXeT BbITb onpe-
[lefleHa eAMHCTBEHHbIM 06pa3oM MOCPeACTBOM YCPeAHEHUS N0 eAUMHCTBEHHOM pUCK-HeMTpanbHoi Mepe. [ng
HEMOJIHOTO PbIHKA, OHAKO, PUCK-HEMTpanbHas Mepa He YHUKaNbHA U BO3MOXHO OLEHUTb CTOMMOCTb OMLMOHA
B BUOE MHTEpBana LEH, He AOMYCKaLWMX apOUTpax, KoTopble 6binn Bbl MPpUEMNEMBI KaK 415 NpoAaBLa, Tak
M ON9 nokKynaTens KOHTpakTa. [paHUYHble TOUYKM TaKOro MHTEpBana XapakTepusyT MUHUMANbHYIO U MaKCK-
MaslbHY0 CTOMMOCTb, HA MHOXECTBE SKBMBANEHTHbIX PUCK-HENTPAbHbIX MEP AAHHOIO PbIHKA, @ TAKXE CpefHue
CTOMMOCTM AUCKOHTUPOBAHHOM PYHKLMK BbIMAAThl OMNLMOHA. 3HAs rpaHMLbl MONYYEHHOrO MHTEPBAnNa, B LLENsxX
PUCK-MEHEMKMEHTA, MHBECTOP POPMUPYET Cynep-XemKupyoLme cTpaTteruun. B Hactosawlei pabote npusoanTCcs
OPUTUHAJbHBIM MOAXOL, K PELLEHMUI0 NPOBeMbl OLLEHKM rpaHUL, 6e3apbuTpaXkHOM CTOMMOCTM OMLLMOHA Ha He-
MosIHOM pbiHKe. CyTb MOAX0AA 3aKNH0YAETCS B f0DaBIEHNM HEOBXOAMMOrO YMC/Ia BCMIOMOraTe/bHbIX aKTUBOB
C LleNblo MOJTyYeHMs MOSTHOTO PbIHKA, HA KOTOPOM 3afa4ya MMEeeT eAnHCTBEHHOE pelleHue. PaccMaTtpuBas Bce-
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BO3MOJXXHbIE MOMOJIHEHMS, BO3MOXHO TAKXE OLEHUTb MMHUMa/bHYI0 M MaKCMMasbHYK CTOMMOCTM OMLMOHOB Ha
HEMOMIHOM PbIHKE M MONYYUTb MHTEpBaN Be3apbuUTpakHbIX LEH. Takoe onucaHue aBiseTcs AyasbHOM XxapakTe-
PUCTUKOM MHTEpBaNa CTOMMOCTM OMLMOHA Ha HEMOMHOM PbIHKE. ABTOpbI I€Ta/lbHO PacCMOTPENM NPUMEHEHUE
[laHHOro Noaxoaa K MHOrOMepHOM AMdPY3MOHHOM MOAENM pbiHKA M 06CYAUNM BO3MOXHOCTb MPUMEHEHMUS
[IaHHOTO MOAX0Aa NPU PeLleHnm 3a4a4 HEMOHOTO XeAXMPOBaHMUSA U ONTUMaNbHOrO MHBECTUPOBAHMA.

Knroueenie cnoea: LeHOOOpa3oBaHWE OMLMOHOB; MOJIHbIE PbIHKM; HEMOJHbIE PbIHKK; HEAPOUTPAXKHbIE LEHBI;

CTpaTerMm XemKMpPOBaHMS; yNpaBieHWe pUCKaMm

1 Introduction

The problem of option pricing remains one
of the most attractive and valuable problems.
Mathematically, this problem admits a perfect
solution if the market is complete, i.e., every
contingent claim is attainable in the class of
self-financing strategies or, equivalently, only
one risk-neutral measure exists. Averaging
over such a measure leads to a unique option
price, called fair price in such a market. In
an incomplete market, where non-attainable
contingent claims exist, the situation is much
more complicated because there are infinitely
many risk-neutral measures. Averaging given
discounted contingent claim over each such
measure, one can get the whole interval of
non-arbitrage option prices in contrast to one
price in a complete market. So, in incomplete
markets, to solve the option pricing problem,
one needs to calculate the end points of this
interval or provide their estimates.

In the present paper, we describe a fruit-
ful method of solving the problem mentioned
above. The leading idea of the proposed method
is to transform the initial incomplete market
model in such a way to make it complete and,
hence, make it possible to calculate the unique
price for a given contingent claim. Further, con-
sidering all possible transformations of the
initial model, we get a set of non-arbitrage
option prices similar to the set that existed in
the classical approach. These findings lead to
the dual characterisation of this set via minimal
and maximal values as lower and upper option
prices. Such a method of market completions
was independently proposed for different in-
complete market models: Karatzas (1997) —
for multivariate diffusion models, Melnikov
and Feoktistov, (2001) and also Appendix 3 of
Melnikov (1999) — for multinomial markets.
The approach also works for pricing Ameri-
can options too (see, Guilan, 1999). Since that
time, option pricing theory was tremendously
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developed in different aspects, including im-
perfect hedging, utility-indifference pricing,
etc. It is pretty natural to expand the range of
its applications.

We demonstrate that instead of using a set
of equivalent local risk-neutral measures as a
parameter for fair price interval estimation, an
agent can work with an easier-to-interpret set of
possible completion assets. For obvious reasons,
this approach opens a way to nice flexibility of
auxiliary assets and greater practical application
as one can potentially find necessary assets to
complete the market.

The method of market completions can mainly
be used in two different ways. The first approach
consists in the estimation of the price intervals. As
there is a set of possible orthogonal completions
available, one may aim at the estimation of the
intervals of optimal prices that can be uniquely
calculated in complete markets. The second ap-
proach is to pick particular completion. This idea
is similar to choosing a specific measure of risks
such as Esscher measure or Minimal Relative
Entropy measure (see, for example, Miyahara,
1995). The second approach allows us to be more
specific regarding assets required for the market
to be complete. In some cases, it might be even
possible to reverse-engineer such auxiliary as-
sets, for instance, with the help of the BSDE
technique (see Kobylanski, 2000).

In addition to option pricing problems, in-
vestors are also interested in finding an op-
timal strategy in incomplete market, often
with some constraints. So, it is natural to look
towards applying the proposed dual charac-
terisation for these types of problems. There
is a well-developed study in the area of par-
tial hedging in complete markets. In Follmer
and Leukert (1999) and Spivak and Cvitanic
(1999), authors considered quantile hedging, or
maximisation of the probability of successful
perfect-hedging, in Follmer and Leukert (2000),
authors also investigated shortfall minimi-
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sation in line with its utility-weighted value
minimisation. These articles lay a foundation
of partial hedging with the help of Neyman-
Pearson lemma and Convex optimisation meth-
ods. Since recently, risk exposure is measured
with the help of special measures widely used
by market participants: Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR). The
latter one is better known as Expected Short-
fall (ES) and was recommended in 2016 in The
Market Risk Framework of Basel III — an in-
ternational regulatory accord. These measures
spark a particular interest in their application
in the optimal partial-hedging problem. Mel-
nikov & Smirnov (2012) show that it is still
possible to apply Neyman-Pearson lemma to
CVaR optimisation. Recent papers Cong et al.
(2014), Li and Xu (2013), Capinski (2014), and
Godin (2015) demonstrate a growing interest in
CVaR optimisation. We will demonstrate how
the method of market completions becoming a
useful tool when solving this type of problems
on an incomplete market.

The rest of the paper is structured as follows:
Section 2 provides necessary details regarding
the model under consideration. With the un-
derstanding of the reasons for market structural
incompleteness, we move on to the central part
of the paper — introducing the Method of Market
Completions, which is discussed in Section 3 in
line with its comparison to classical methodolo-
gies risk-neutral price interval estimation on
the incomplete market. Section 4 elaborates on
connections between market completions and
some alternative methods used for handling
market incompleteness. Finally, we briefly cover
potential further steps towards solving famous
partial hedging problems on the incomplete
market in Section 5 and conclude the paper in
Section 6.

2 Multivariate Diffusion Market Model

To demonstrate results that follow, we
will work with the Standard Multidimen-
sional Market Model, which is defined as
(B,S)=(B,.S,,....8"),«r, where (B),., repre-
sents the value process of a risk-free asset that
is usually assumed to be a bank account and
S, =(S},....8"),cr is a n-dimensional vector
process that describes the prices of » risky as-
sets:

dB = Brdt, B,=1

R L (1)
ds; =S} | wdi+ oldW;

j=1

We will also call £, = {G;j }i , @ volatility matrix
of this model. Note that elements of a k£ -dimen-
sional vector W:(Wl,...,Wk) are independent
standard Brownian motions. In general, one can
define a multidimensional market model so that
each risky asset price is governed by its own
separate Brownian motions that are mutually
correlated. However, it was shown, for example,
in Dhaene et al. (2013), that both mentioned
models are equivalent. Further in this paper, we
will use the model with independent “underly-
ing” Brownian motions for illustration.

Let us call the (F),.; -measurable process
t=(,.m,,....,n ),y a portfolio (strategy). This
process would reflect amounts of correspond-
ing assets possessed by an investor. Obviously,
the capital or value of such a portfolio can be
described as

th = BtBt + antstl (2)
i=l1

Note that not all strategies would be appro-
priate for the investor. Typically, the agent on
the market has an initial budget x, and the
natural constraint is that strategy value should
not fall below some threshold at any moment ¢
while strategy is in action. To accommodate this
condition, denote the class of admissible port-
folios with initial capital x as

A(x)={n:V7 =x3K(n)20 st V] 2-KVI<T}.

For simplicity, we might consider K =0,
meaning that the investor does not want his
portfolio to have negative value at any moment
until the maturity of the strategy.

Admissible strategy w is called self-financing
if the following conditions hold:

‘Ti [‘7‘;“; ‘ +(n})? i(c? )zjdt < oo
j=1

0 i=l

0t
VE=Vy+ Y [ridst (3)

=10
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In other words, strategy is called self-financ-
ing if its capital changes only due to changes
in asset prices without additional injections or
extractions of capital by the investor. We will
denote the class of self-financing strategies with
initial capital x as SF(x).

Definition 0.1: Model is called arbitrage-free if
there is no strategy m e SF(x) such that it has zero
initial cost of investment and leads to non-zero
profit at maturity with positive probability:

V=0, P(V7>0)>0.

It is well known that the market model is
arbitrage-free if and only if there exists an
equivalent martingale measure. It was shown
in Karatzas and Shreve (2000) that for the Stand-
ard Multidimensional Market Model (1), the
no-arbitrage condition could be summarised in
the following proposition.

Proposition 0.1: If there exists a (F,),.t — Dro-
gressively measurable process 0=(6.,...,0),,
that satisfies

k
ZGjJG{:ui—r, i=1...,n, P—a.s.

J=1

4)

and

1S
E exp[EJZ(e{ydt} < oo, (5)

0 /=1

then the (B,S) the market is arbitrage free.

In other words, the market is arbitrage-free
if system (4) has the solution.

Remark: The inverse Proposition 0.1 is, in
general, not true. Condition (4) should hold. How-
ever, Novikov condition (5) is sufficient but not a
necessary one for uniform integrability of Girsa-
nov exponent and, consequently, for equivalence
of corresponding risk-neutral measure.

Remark: Solution to the system (4): 6, is, actu-
ally, the one to use for the famous Girsanov theo-
rem to switch to equivalent risk-neutral measure
under which discounted risky assets in the model
(1) become martingales.

Remark: Condition (4) can be equivalently
written in a vector form:

6, =n-r

where 0, eR*; u,,reR" Vie[0,T].
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k
Denoting ||o; |I= /2(6?)2 , condition (5) can
also be written as: \ Jj=1
1 T
E exp[—fnc;' 2 dt] < oo,
2 0

Market Completeness

Definition 0.2: (Market completeness) The
market is called complete if for any F; — measur-
able payment function H = Hy (0)>0, such that
E[H] <o there exists a strategy me SF(x) such
that P—as.

VE(x)=H.

Generally speaking, market incompleteness
means that sigma algebra ;> generated by risky
assets is smaller than F on which contingent
claims are defined, namely, 7° c F. There might
be different reasons for market incompleteness,
including, but not limited to:

1. Structural: There are more sources of risks
on the market than tradeable assets available. In
such a case, it is natural to define sigma algebra
for claims as the one generated by underlying
sources of risk. In the case of model (1), it would
be 7.

2. Informational: Some investors may have
more information regarding the asset price dy-
namics on the market than others. Typical cases
of Large investor were described in Eyraud-Loisel
(2019); Follmer and Schweizer (1991).

3. Due to complex parameters or restric-
tions: When parameters of the model become
stochastic values (stochastic volatility, stochastic
drift, etc.) which are not observable explicitly
on the market.

In this paper, we will focus on the structural
incompleteness of the market. Condition for
such incompleteness in case of (1) was obtained
in Karatzas and Shreve (2000) and Dhaene et al.
(2013). We summarise them in the following
theorem.

Theorem 1: Standard financial market M
is complete if and only if a number of available
stocks n = k, where k is a dimension of underlying
Brownian motion.

Consequently, to have a complete market, we
need to have a proper, non-degenerate volatility
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matrix X, with n=k . As market completeness
means the existence of a unique martingale
measure P*, the market is complete if system
(4) possesses the unique solution 6, e R*. Gir-
sanov exponential for transition to that unique
martingale measure in the multidimensional
case will be written in the following form:

dP’ o 1 &t
_ i i i\2
5= exp{ ;le,dw, : Z ! ©') dt} (6)
3 Completions of Diffusion Model
and Option Pricing

We now move on and introduce the method of
market completions which is the main focus of
the present paper. First, we formalise the no-
tion of market completion.

As we already noted, markets, in reality, are
barely complete, so it is reasonable to find a
way to handle market incompleteness. In the
previous chapter, we showed that, when speak-
ing about structural incompleteness, such in-
completeness for Standard Multidimensional
Diffusion market model demonstrated through
the volatility matrix which rank is not full. Or,
roughly speaking, when the volatility matrix for
tradeable assets has a rectangular shape with
more columns (sources of risks represented by
independent Brownian motions) than rows (risky
assets).

In other words, to obtain a complete market
that would correspond to the existing incom-
plete one, it is reasonable to add more “rows”
into the volatility matrix under consideration.
This idea forms a foundation of the method of
market completions.

Obviously, “completing” assets should be
independent of existing ones and among each
other to solve the issue of a non-full rank vola-
tility matrix. Adding them, we obtain a “proper”
volatility matrix that corresponds to some com-
plete market where known and well-developed
methods can be applied.

Definitions of the Method of Market
Completions

Assume the canonical market model (1) with
n risky assets for which n<k . As always, as-
set price dynamics is defined on measure space
(Q,F,P) equipped with filtration F generated

by k -dimensional Brownian motion. We will
call assets that form this incomplete model
primary assets or existing assets.

Denote §¢ a (k—n)— dimensional (F),.; -
adapted process S =(S"",...,85),., with the
same structure as primary assets:

k
ds' = ' Luﬁdt+20§"dW,j}, i=n+l,...k.

J=1

With the help of newly introduced assets, we
can “fix” initially rectangular volatility matrix
for a set of existing risky assets o :

k risks

(M

= (n X k)matrix

by adding k£ —n auxiliary assets introduced:

L1 Lk

Gt’ cen Gt’
nl n,k
O, S,
= = (k X k)matrix (8)
n+l,1 n+l,k
S, S,
k1 Kk
G, O,

Which helps us to arrive at a properly shaped
volatility matrix ¥ .

Definition 0.1: The (k—n)- dimensional
(F) .1 — adapted process S¢=(S;™,...,S¥) r is
called a completion for the (B, S) market if the
resulting volatility matrix 3 has full rank for all
t<T.

Definition 0.2: A completion S¢ = (§“+1,...,§k)
is called orthogonal if it satisfies:

S!,8/ =0,foralli =1,...,n; j =n+1,....k;t €[0,T]
and
S;,S/ =0,foralli, j=n+1,...,k;t €[0,T]

Remark: Operation <,> is taken from the
standard martingale theory and represents the
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quadratic covariation of martingale parts of the
processes.

Further in this paper, the set of orthogonal
completions will be denoted as C”". We dem-
onstrate that any market completion can be
transformed into an orthogonal form.

Lemma 1: For any completion S° €C of the
(B,S) market, it is possible to find an orthogonal
completion S° e C".

Proof

It is enough to show that one can always
construct orthogonal completion from non-
orthogonal assets. It can be accomplished, for ex-
ample, with the help of a famous Gram-Schmidt
method. Our goal is to construct a process
S¢= (f””,...j") that satisfies the definition
above.

To do it, we first define the stochastic loga-
rithm H' =(H)),.;:

i k
dH' = dS; =wdi+y oldW,

t j=1

Considering that i#j,if H/,H/ =0 for all
1€[0,T] then §;,S/. On the other hand, if row-
vectors o) and o/ of volatility matrix are or-
thogonal for i # j for all 7€[0,T], then

t t
H! +£ugds+12il !c”dWs’, H{+

<H’I’H’j> - t -
kot
+J-u§ds + ZJ-Gﬂ aw!
0

=1

Ik

_ il __jl

= JZGS ol ds
0 /=1

Consequently, to complete the proof, it is
enough to show how to construct orthogonal
row-vectors 6/ and it would imply orthogonal-
ity of assets.

To construct such vectors, we will use the
Gram-Schmidt method of orthogonalisation for
o,i=1..,k:
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) . o.,0
with o/=—-~L for
G/,6/
i,j=2,...,k;j<i.lItis easy to see that obtained
vectors are indeed orthogonal.

Let us also obtain the assets for completion.

Defining H' =(H/),., for i=k+1,...,n as

dH' =, + Y &/ dW,,

I=1
—1 _ 1
M, =k,

i-1
AT § i
H =W, = ol
J=1

with

for i=2,...,n. Final completion assets can be
obtained from:

dS! =S/dH/, jek+1,n

Remark: Orthogonalisation of drift terms for
assets in the proof of lemma above plays a rather
technical role. In such a form, one would get a
much simpler solution for the (4).

Working with the Set of Orthogonal
Completions Instead of ELMM
Let us now demonstrate that working with the
set of possible orthogonal completions would be
equivalent to working with the set of equivalent
local martingale measures (ELMM). As a reminder,
an equivalent probability measure is called equiv-
alent (local) martingale measure if discounted
risky asset price under such measure is a (local)
martingale. We will demonstrate this in case of
the problem of estimation of risk-neutral price
interval for an initially incomplete market model.
It is well known that in incomplete markets,
there are infinitely many ELMMs. Consequently,
the risk-neutral price is not unique, and it is more
reasonable to speak about the interval of initial fair
prices. From the classical martingale approach, it
is known that this interval could be described as:

el ]
Pe M BT Pe M BT

where f, — contingent claim maturing at time
T and M — set of all ELMMs.

We will demonstrate that fair price interval
boundaries obtained with the help of the method
of Market Completions coincide with ones from the
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classical approach. It is straightforward that by “com-
pleting” our (B,S) the market we arrive at volatility
matrix ¥ and force the system (4), or, in this case

0, =u —r, P-as.

to have a unique solution 6.

For this completed market model, there should
exist unique equivalent local martingale measure,
parametrised with the help of solution {8, },, . As
each “completed” volatility matrix corresponds to par-
ticular market completion, there is a one-to-one cor-
respondence between the set of ELMM for the initial
incomplete model and a set of orthogonal completions.

Lemma 2:

A. Each completion S° uniquely defines a single
ELMM in the incomplete market. Moreover, for the
equivalent orthogonal complete market (obtained
using the method of Lemma 1), such local mar-
tingale measure will be the same.

B. Each ELMM P in the incomplete market (
P e M) will be a unique ELMM in the associated com-
pleted market model. Therefore, the set M of ELMMs
in the incomplete market is equivalent to the set M°*
of unique ELMDMs corresponding to each completion
of the market.

This beautiful fact allows us to switch analysis
from a very abstract class of Equivalent Martin-
gale measures to a class of “completing” assets.
The latter is much easier to interpret and also
impose different restrictions such as maximal
asset volatility or no short selling on the market.
For now, let us focus on fair price calculation.

Theorem 2: In the incomplete (B,S) market,
assume that r=0 and let M, and G, =(6ﬁ1,...,6§")
be as defined in the proof of Lemma 1 for i=1,...,n
.Let also W be a standard k -dimensional Brown-
ian motion, with the first n elements given by

=, 1 k —
Wi==20 W/ ©)

rj=1

ko )2

for i=1,...,n, t€[0,T], where &} = 2(0,1) )
j=1

Then the upper hedging price can be expressed as

C'(fr.P)=

- (10)

Change of Numeraire
In line with the Equivalent Martingale Measure
approach, it is also worth mentioning the so-
called change of numeraire pricing approach. Its
connection to the method of market completions
was described in Guilan (1999). We provide the
main steps below for informational purposes and
to complete an overview of the method of Market
Completions in application to pricing problem.

According to this approach, instead of trying to
“re-weight” the probability of events by choosing
some risk-neutral measure, one is searching for a
special portfolio that could be used as discount-
ing factor instead of the classical bank account.
However, the choice criteria for such discounting
portfolio stays the same — discounted strategy
prices should be martingales.

More formally, the main goal is to find a port-
folio, which value process X, is a strictly positive,
continuous Ito process such that:

dX, = X, (rdt+mc, (dW, +u,dt)).

Remark: Here, we will intentionally use nota-
tion u instead of © just to distinguish approaches.
However, they both represent the same idea of the
price of the risk.

We want to use this portfolio as numeraire,
such that risk-premiums with respect to this
numeraire are constrained to be equal 0. In
other words, the price process, discounted by a
mentioned portfolio, will be local martingale
w.r.t. “objective” probability P.

Theorem 3: Let a, =(G,G,T)_1 (u,-r1), i.e.,
u, =c! -o,. Consider the self-financing strategy
n, =(0o)), in the risky assets. Denote by M, the
present value of this admissible strategy. Then
M, satisfies SDE:

dM, = M, (rdt +(u,)" (dW, +u,dt))=

= M, (rdt+|u, | dt+(u,)" dW,) (11)

In the market with M, as numeraire, investors are

. . S,
risk-neutral. M-price process S¥ = ﬁt of any asset
t
S, is a local martingale. We refer to it as a market
numeraire.
Proposition 0.1: If m is a strategy that cor-
responds to M, then:
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» m maximises the expected logarithm of terminal wealth

* m is unique even in an incomplete market

» m maximises the expected growth rate.

Details about mentioned properties can be found in Bajeux-Besnainou and Portait (1997).
Price of European contingent claim f; on the complete market, according to market numeraire

approach could be found as:
V. =R’ (i) (12)
0 MT

When one is working with the incomplete market case, it is obvious that there are several risk-neutral
prices, as we can find several o, that fit conditions of Theorem 2. Let us now apply the market com-
pletions approach and show that it can estimate option price boundaries on an incomplete market.

Let us consider some market completion S§°. Then coefficients of these fictitious assets satisfy

det(o(p)) = det(c’ji Oandu(p,a,)= (G’]_l ( b=l J (13)

t t a, _rtIk—n

with T
JII u(p,a,t)|’ dt <o, P-as.
0

On the completed market, one can define market numeraire as in (11):
dM (p,a,t)= M (p,a,t)(r,dt+| u(p,a,1) |’ dt+(u(p,a,t))Tth)

In the completed market, we have the fair price of CC f; calculated similarly to (12):

vy (p,a)=EP{m]-

Let
4 (p) = inf ¥, (P,a), V, (P) =supV, (p,a)

aer aer

T
with D, = {a : R*™" valued progressively measurable processes such thatf [l u(p, a,t) I dt < ooa.s}.
0
According to Guilan (1999), the following proposition holds.
Proposition 0.1: V,(p) and V, (p) are independent of P.
Proposition 0.1 serves as another proof that it is enough to work with orthogonal completions
only. Let us pick the orthogonal completion 6p’ =0, pp’ =7.Forsuch p and ae D,:

-1
o w,—rl, -1
”(P’a)z[pJ (at’_rlkn]zcr(ooT) (w=rl,)+p" (a=rl,_,)=u+y=u,. (14)

And this U, would be used for the construction of market numeraire. Also, it follows that

oy =0,
and
a=py+rl,_,

It means that the “non-arbitrage” vector u,, on the completed market can be decomposed into
u from incomplete source market and y which is completion dependent. If we define class
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T
K(G) = {\u Jyis R* —valued progressively measurable,c,y, =0,V e [0, T],a.s.andj Iy, I dt < oo,a.s},
0

then this class will be a parameter space for fictitious completions of the incomplete market. For
each y e K (o) one can find a fair price in a completed market. It implies that option price bound-

aries will be
fTT ‘;E;]

Jr ]-;} or inf E[M\V(t)M ( )

M, (T)

yeK(o)

J(t)= sup E| M_ (¢t
()= sup. { ,(0)

Remembering results from Guilan (1999), it is possible to show that these price boundaries

coincide with boundaries from the classical approach:
f;}

In other words, it was also shown that J(¢) coincides with V' (¢). For more details, we also en-
courage the reader to carefully read Guilan (1999) research.

.7-“,:| or inf B {Btg—T

PeM T

4 Completions in Context of Markov Factors, Dimension Reductions and Jumps
Connection to Markov Factor Model .
Denote Girsanov exponential (6) as Z, = TR It is known that this process is a solution for

dZ,=70dW, Z,=1

—i

and noting that 0, = % from non-arbitrage condition X8, =i, (r=0). Then equation (10) can
t

be re-written in the following form:
C(fr.P)= s%pEP I:ZT (8) /7 (W)]

Moreover, as the first k elements of the vector 6 are independent of the choice of comple-
tion and only depend on the correlations between existing assets, one can represent vector
as 0,=a +¢, a,c, €R" where the first one contains elements of 8, calculated based on existing
assets only. Namely:

a=\e...85,0],
c=[0,6/"...0"1".
In this case, the equation for Girsanov exponential can be re-written as
dZ, = ZadW,+ ZcdW, Z,=1

Hence, market completions can be connected to the Markov Factor Model:
ds, = D(s,)(n(¥,)di+o(¥,)aw,)
dB, =rB,dt
where Y, is (k—n) dimensional factor process, which does not contain any price processes
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dY, =uy (Yt)dt+GY (Yt)dI/Vt,
u, and o, are vector functions of appropri-
ate dimensions. Or, more conveniently, to the
Independent Factor Markov Model in which we
assume that vector-valued Wiener process W

could be split as
WS

such that W5 is n-dimensional and corre-
sponds to existing assets on the market and
wY is (k—n) dimensional and corresponds to
factors. In this setting, Markov Factor Model
can be written as:

ds, = D(S,)(u(¥,)dt+o(Y,)dw;*),
dY, =, (Y,)dt+o, (Y,)dw,",
dB, = rB,dt.

(15)

It is possible to show that split (15) is similar
to what was demonstrated in (9) with existing
assets on the incomplete market being assigned,
in fact, to W' for iel..n,te[0,T] which corre-
sponds to W and the rest of W' being assigned
to W as it only depends on (k —n) dimensional
Brownian motion.

Remark: To briefly demonstrate the idea
of transformation completions notation into
Markov Factor model one. Assume that we per-
formed the transformation mentioned in (9)
for the Standard Multidimensional Diffusion
Market model. In this case, it is easy to see
that the “completed” volatility matrix can be
written as:

Where L., is a lower triangle matrix and
D(k_n)x(lk_n) is a diagonal one. This leads to the
natural split of vector W into two parts. Without
loss of generality, one might assume first n elements
of W to be denoted as W® e R" and the last (k-n)

elements as WY e R* ™,

Dimension Reduction
Another natural approach to transform the
volatility matrix into a proper one would be
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to “trim” it. Or somehow “regroup” underly-
ing Brownian motions in such a way that the
reduced volatility matrix for them will have
the proper shape. This idea was introduced by
Zhang (2007).

For the introduced Standard Multidimen-
sional Diffusion Market Model, dynamics of each
risky asset price is governed by the sum of inde-
pendent standard Brownian motions

ds) =S)rdt, Sy =1
k
de=Sf[ufdt+2c5’de,j, i=1l...,n

J=1

However, as already mentioned, it is possible
to write down an equivalent market model which
would be governed by n correlated Brownian
motions instead of k£ independent ones (see,
e.g., Dhaene et al., 2013):

-3

lj

,II

t

then
ds; =S, (widt+1|c} 1| dB; ), i=1,...n.

Obviously, obtained Brownian motions are
not independent anymore, namely

dB,dB/ =p]

.Y ool
Pl =
llo; l-llo; i

In this model, we have n-dimensional Brown-
ian motion vector with correlated components
B = (B,l,. B ) , the relationship between which
can be described by matrix ¥, = {p }i.1-1.n+ Notice
that ¥, is a non-singular, symmetric, and pos-
itive semi-definite. That implies the existence
of matrix square-root 4, :

Y, =4, 'ATT, A, ={atij}i,j:l..n

Moreover, 3W},...
that:

,W,” independent, such

B =ijafdlfﬁ :

J=10
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As a result, risky assets can be presented in
a form

de:Sf{ujdt+6ﬁZaf/dlfl7,f], i=1,..n

J=1

(o]

=04,

Where E, is a diagonal matrix of ¢’ and ma-
trix A4, depends on the particular decomposition
of ¥,. According to Zhang (2007), one obtains
the following model:

dS,":St"[uﬁdt+26?'dVl~/,j}, i=1...n

=1
0, :A;I 'E;l '(!»tf —thn)

etz = (Ht _rtln)T '(GthT )_l (““t _’;ln)

Completions for the Models with Jumps

The idea of adding auxiliary assets to the
market to make it complete is not limited to
the diffusion market model. There were also
some developments towards a more general
geometric Levy model in which asset price is
governed by jumps

dB, = rB,dt
ds,=S,_(udr+dz,)) S,>0,
Z,=cW,+ X,

where X, is a pure jump process and W and
X are independent variables. It is well known
that such Levy model is not complete even in a
one-dimensional case as it includes jumps and
Brownian motions as two independent sources
of risk and only one asset to use. So instead
of introducing the same structure auxiliary as-
sets, authors in Corcuera et al. (2005) enlarge
the Levy market with the so-called i th-power-
jump assets defined as

X0=¥ ax,y, iz2,

0<s<t

where AX =X, -X,_ and X,(l) = X,. Processes
X" are again Levy processes. These power-
jump processes jump at the same time as the
original Z, ; however, jump sizes are the i-th
power of jumps of the original process. Note,

that X = Z% i >2.1t is convenient to re-write
these assets in the compensated form

Enlargement of the model is then consisting
in allowing to trade in assets:

HY) ="y 22,

With these assets available, it was demon-
strated in Corcuera et al. (2005) that any square-
integrable martingale M, can be represented
as follows:

t oo
M, = My + [ndZ, + > hdy?
0 i=2

where A, and hs(i),iZZ are predictable pro-

cesses such that

Z=Z,—(u-r)t,t 20

and

t
E[jms & ds]<oo
0
t
EDMS(") I ds]<<>o.
0

In other words, for any square-integrable
contingent claim f (non-negative, 7, measur-
able random variable) we can set up a sequence
of self-financing portfolios whose final values
converge in I’ (P* . This portfolio will consist
of a finite number of bonds, stocks and i th-
power-jump assets. It means that f can be
replicated, and the market is approximately
complete.

This interesting result is important to con-
sider within the general idea of market com-
pletion because it offers to search for more
specific auxiliary assets beyond just structure-
preserving ones discussed before. In the case of
the Levy market model or another model with
jumps, it might be more convenient to pick
specific types of completing assets for each kind
of risks presented. It is also useful in terms of
interpretation of the auxiliary assets as power-
jump-assets are by nature instruments that
give exposure to moments like variance (2nd-
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power-jump asset) or skewedness and kurtosis
of distribution (3rd and 4th correspondingly).
Assets of such type might be more conveni-
ent to introduce to real markets to fix their
incompleteness.

5 Completions in Optimal
Investment and Partial/Imperfect
Hedging
Let us now elaborate more on the application
of the method of Market Completions. In this
section, we mainly focus on another big part
of the area of the Mathematical Finance field —
hedging of contingent claims with the major

focus on partial hedging.

The idea of introducing fictitious assets to
complete the market has already demonstrated
potential on the side of partial hedging. First, it
is reasonable to look at the classical approaches
of partial hedging known for complete market
and demonstrate potential towards implement-
ing market completions method for the incom-
plete case. As it is known, the most up-to-date
risk measure approved in the Basel III accord
is CVaR.

Definition 0.1: Value-at-Risk (VaR) measure
of aloss X can be defined as

VaR,(X)=infa: P(X >a)<o

Definition 0.2: Conditional Value-at-Risk
(CVaR) measure of a loss X can be defined as

CVaR,(X)= leaRa (x)dx,
o
0

The problem of CVaR optimal hedging con-
tingent claim H under budget constraint x <V
therefore can be stated as

CVaR (x,m)—>min
Ra( ) (x.m) (16)

x<V

Inspired by Rockafellar and Urasev, Melnikov
and Smirnov in Melnikov and Smirnov (2012)
demonstrated that, introducing the special func-
tion of parameter z e R

1 . n +
e(2) =+ minE[ (A (2) V7 (x))]
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where H(z)=(H-z)" — modified contingent
claim H , the problem of CVaR minimisation
in case of European contingent claim will be
equivalent to the following one:

m%lc(z) = r(nir)lCVaR(x (x,m).
z€e X,T

Consequently, solution of (16) can be decom-
posed into consequent optimisation by z after
solving “internal” problem:

E[(H(z)—V{’ (X))+:|—>I’Tltli£1

a7

Alternatively, one can approach this prob-
lem from the perspective of optimal split into
hedged/unhedged proportions of the claim
H=f(H)+R,(H),where f(H) describes the
optimal hedged proportion of the claim. This
method was offered by Cong et al. (2014).

Considering European type contingent claim,
we expect to have a pay-off at maturity time
T, so the total risk exposure of the investor is
going to be

T, (X)=R,(X)+eTI(f (X)), (18)
where H(f(X)) is some chosen pricing func-
tional for the hedged part of exposure.

Given the initial budget constraint, the in-
vestor is pursuing the goal of minimising risk
measure of total exposure (18), given the re-
striction on the initial cost of hedging

min CVaR(T, (X))
st. T(f(X))<m,

According to Cong et al. (2014), under particu-
lar assumptions, an explicit way of identifying
the optimal hedged loss function is stated in
the following theorem.

Theorem 4: Assume that pricing functional is
linear for any time-t contingent payout Z. Then, the
optimal hedged loss function g; is given by

g (x)=(x=d") —(x-u')"

where (d*,u*) satisfies the following equations
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e’ ]-Q(X >x)dx =,
-
Q(X > u*)

]P’(X>u*):0c-Q(X—>d*)

and Q is a risk-neutral measure.

In both approaches, we arrive at some known
problem that is well described for the complete
market. Consequently, completion of the market
can be helpful as it helps to “parametrise” a
solution by the set of completing assets. There-
fore, choice of the proper completion by market
conditions such as partial equilibrium Hu et
al. (2005), Esscher measure or Minimal Rela-
tive Entropy Measure will be a powerful tool
for solving CVaR optimisation problems on the
incomplete market.

To demonstrate sensibility of usage of Method
of Market Completions for solving stated par-
tial hedging problem (17), we provide existing
techniques of partial hedging where Method of
Market Completions has already demonstrated
great potential or ready to be implemented.

Utility Maximisation

Let us start with the simple case when the goal
of the investor is to finance a strategy that pro-
vides the greatest terminal wealth utility.

v (%)= Sl;lll())E[U(V; (x))}

In Karatzas et al. (1991), authors have shown
how to obtain such optimal solution with the
help of convex duality methods. In the core of
these methods lies Legendre-Fenchel transform

U (y)=max(U (x)=xy)=U(I(y))= 1 (»), where

I:R" —» R" is defined as the continuous decreas-
ing inverse function of U’(x) (details in Tou-
chette, n.d.).

The solution to this problem for the complete
market was given explicitly and can be summa-
rised as the following theorem:

Theorem 5: For a given initial budget V, >0,
under the assumption that function

X, (y)= E[Bng 'I(YBTZ;]“)}<°°,V)’>O,

the optimal terminal wealth of a strategy can
be found as

©=1(%(7)8, 22)
where )) is the inverse of the function X.

By introducing martingale X, = E[[STZ%SLF,]
with stochastic integral representation

! T
X, =Vy+[oldW, with g 7 and [llo, I ds <=,
0 0

replicating portfolio for optimal terminal capital
can be obtained as

~ 1
= 7(2? )" (o, +X,8,).

t

Applying the Method of Market Completions
for the case of incomplete markets, one can in-
troduce k—n fictitious assets in addition to »

existing assets on the incomplete market, driv-
en by the same k -dimensional Brownian motion
as n real tradeable assets. Then, the problem of
utility maximisation can be solved in the com-
pleted market with fictitious assets, but there
are infinitely many ways to introduce those fic-
titious assets.

The relative risk process can then be repre-
sented as 6, =6, +v, with 87v, =0. That means
completions could be parametrised by v which
is square-integrable, 7, adapted and R? valued
process.

Denote also exponential local martingale:

Z'= eXD{—jéZdVVS —%j.(ef + vf)dS}
0

0

and the function
vy>0, X,(v)=E|BZy1(vB,Z))|

Also Vve K, (X) where

K (Z)=veK(Z),X,(y)(,Vy)0, define

gv=1(3(x)B,2y)

where ), again is the inverse function of &,

An attainable solution will give us value less
or equal than that. If we find a strategy m with
initial capital x, which does not require the
purchase of the artificial stocks and completion
A, € K, (Z) such that
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s ELo )] £ (E5)
then, for sure, (m,A) would be optimal. In
Karatzas et al. (1991) the following theorem
was proven.

Theorem 6: If we call A

Optimalityof m: EU (V7)< EU(V;‘) Ve A(x)

'Financiability of & : EI&eA(x) such that
Vi =&
Least Favorability of A :

EU(&)<EU(E) WveKk(Z)
Parsimony of A : E[BTZﬁ,;] <x, VveKk (%)

Then B D=C,

Furthermore, if B holds, then the portfolio n
in B satisfies A.

This theorem provides a powerful instrument
in verifying if one can build an optimal strategy
without artificial assets in use, in other words,
when A =0 will satisfy necessary criteria in
Theorem 1. It was shown to be the case in Karat-
zas et al. (1991) for U(X)=In(X) and, under

S
some special conditions for U(X)zX? where

6<1,0 #0. This edge can further be applied to

more specific problems of partial hedging. We
provide one example from Karatzas et al. (1991)
to demonstrate the application of these condi-
tions to the classical logarithm utility function.

Example 1: Classical example of Utility func-
tion to consider is U(x)=In(x). For this function
one has:

and optimal terminal capi;ccal can be calculated as
&5 = v ©
BrZy

One could check that completion with param-
eter A=0 satisfies D.

—JT.VSTdWS -
E[B,Z}&; |=x-E|exp 1‘;
—Jvo 1P ds
0

<x VveK(%)
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as the process under expectation is a su-
permartingale. It means that investor would
not use auxiliary stocks to form an optimal
portfolio even for hedging purposes.

Efficient Hedging

One of such problems emerges when given an
amount of initial capital v, investor’s goal is
to find the admissible strategy with terminal
wealth V. such that

E[U((H—Vrrﬂ — min
sup E*[VT ]S Vo

Pep

(19)

Follmer and Leukert demonstrated in Follmer
and Leukert (2000) that such problem can also be
solved with the help of convex duality methods,
similar to utility maximisation, as one can define
state-dependent utility function

u(x,0)=U(H(0))-U((H (0)-x)").
And then re-write (19) in the following form
E[u(VT,(o)] = max
sup B [VT ]S Vo
P'ep

which can be solved explicitly on the complete
market.

For each z < E"[ H] there is a unique terminal
wealth Z such that

E[u(2,)]=sw{E[U(2.)]0<z < H,E[7]<2].
It takes the form
Z~=[(y(z)Z$ (w),m)AH((o)

where y(z) is the solution of

E'[1(y(2) 2} (0).0) H(0)]=2

Obviously, such a reduction provides strong
evidence that one can move on in the direc-
tion of Theorem 1 to elaborate on mentioned
criteria and generalise them for this category
of problems.
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Quantile Hedging

An important case of efficient hedging is
when we focus on minimising the expected
size of the shortfall, or U(X)=X . This par-
ticular case is extremely useful for solving
(17) to find the solution of CVaR optimisation
problem (16).

Apart from applying similar convex duality
methods Spivak and Cvitanic (1999), one can
use an alternative approach, which involves the
famous Neyman-Pearson lemma. According to
Follmer and Leukert (1999), it is enough to solve
the equivalent problem

where 40 I d Q* 1%

ap " E[H] dP" E[H]

The solution to problems of such a type was
demonstrated in Follmer and Leukert (1999) and
can be found as a perfect hedge for a modified
claim H = Hp where

O=lap +Var_
ap’ ap’

5=inf(a20|E*[H1d,, lsVJ
F>a

V—E*{HI[H, ]

——>a
dP

v=
E [Hld,, ]
ar

It is easy to notice that the solution is based
on finding maximal successful hedging set, which

21

can be represented as {j}f > Const X H } , Where

H is some claim. With the reasonable assump-
tion that claim H depends on some existing
asset S;. and using the following representation
on the complete market

dpP, i Lol (i VWO i
P —exp{e WT_EG T}—(ST) X A

*
T

Ty

where ¢’ = ﬁ, successful hedging set can be

found in the form of
{(S} )(; x A > Const x H (S} )}

which, in the case of one dimension, coincides
with the solution described in Melnikov et al.
(2001).

In an incomplete market case, we again add
some auxiliary assets into consideration. As was
demonstrated above, one can develop innova-
tive Brownian Motion, under which, last (k —n)
coefficients of each row ¢’ for existing assets in
the “completed” volatility matrix will be equal 0.
Then, using representation (6), if claim A still
depends on existing assets only, it is possible
to show that

{dp7;>a.H}: Zp 2.,

asset completion
dP,

>a- H(asset)}

Consequently, it is reasonable to develop a
general theory of applying Method of Market
Completions to the construction of a success-
ful hedging set. It helps reduce the Quantile
Hedging problem to operations with existing
assets only.

6 Conclusion

In this paper Method of Market Completions is
introduced as a dual approach for operating on
incomplete markets. It was demonstrated that
in the case of pricing problem, this approach
leads to the same solution as classical ones. As
the method of market completions offers an al-
ternative way of working with standard prob-
lems of mathematical finance in incomplete
markets, it was shown how to reduce such
problems to the known version in the complete
market.

In line with it, alternative ways of handling
market incompleteness were observed with their
connection to the method of market comple-
tions and possible future developments and
improvements of the presented method. Further
enhancements of this method consist in finding
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a way for reverse-engineering parameters of the other hand, it will also be beneficial to find
the completion required utilising BSDE, partial a way of choosing the most suitable completion
equilibrium market condition or using another according to market conditions and investors
asset class like bonds or insurance contracts. On  goals.
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BeHb npodeccMoHanusma u apyrue. l1pyM 3T0M OLEHKY PUCKA Mbl NpefnaraeM nNpoBOAUTb C MOMOLLbIO
MEeToAa HevyeTKOM NOrUKKU, YTO NO3BONSET ONpeaensaTb 3aBUCMMOCTb PUCKA OT pa3/IMYHbIX NapaMeTpoB
B YCJIOBUSAX UX HeonpeneneHHOCTU. [10 MHEHMIO aBTOPOB, NpefiaraemMas MeToaMKa NMoOMOXeT u3bexarb
HEKOTOPbIX HEMPABUJIbHbIX YNPABEHYECKUX peweHnn npu GopMUPOBAHUM aBTOPCKUX (paboymx) Kon-
NeKTUBOB, KOTOpPble MOrAM 6bl MPUBECTU K HEFAaTUBHLIM NOCNEACTBMAM NpU AanbHENILEN peannsaumm
H6M3Hec-npoekTa. 3TM HeraTMBHbIe MOCAEeACTBMSA MOTYT BblpaXaTbCsl B 3aTArMBAHUM CPOKOB peanu3auuu,
YOOPOXaHWKU CaMOro MpoekTa MaKn faxe notepe 6U3HecCa M3-3a YTEYKM KPUTUUYECKM BAaXKHOM MHDOpMa-
uMu 1 Kagpos. [NpencraBneHHas aBTopamMu MeTOAMKA NO3BOASET NOBbICUTb 3IQPEKTUBHOCTb NpOBEAEHMUS
KaapOoBOW MONIUTUKM HE TONbKO B OTAENbHbIX OPraHU3aLUmnaX, HO U B KOPNOpaLUnax U 06beamHeHUsx, uMe-
IOLWMX CNIOXHbIE CeTeBble CTPYKTYPbl.

Knroueswie cnosa: 613HeC-npoeKT; KBaAMPULMPOBAHHAs yTeuka; MHGOpMaLMOHHAs 6€30MacHOCTb; BHELLHWM

M BHYTPEHHMIA HAPYLLUUTENb; YETIOBEUYECKMI PaKTOP; HEYETKAA NOrMKa; YNpaBleHNE PUCKOM

1 Introduction
In current conditions, any organisation (enterprise)
starting a new business project must determine the
purpose (aim) of this project, the necessary funds
and resources for its implementation, and possible
risks.

The document titled GOST R ISO 31000-2019

“Risk Management. Principles and guidelines” de-
fines risk as: “the consequence of the influence of
uncertainty on the achievement of aims”.

This influence can lead to a deviation in achiev-
ing the aim. The deviation can be expressed as a
failure of deadlines, an increase in costs, or even a
complete failure of the project and, as a result — the
loss of business.

The longer the project’s duration, the more likely
it is that its implementation’s external and internal
conditions will change. It means that long-term
projects are a priori riskier than short-term ones.

Currently, no solid business project is complete
without the use of information technology. And these
technologies both help to speed up all processes and
bring with them new threats and risks.

According to the InfoWatch group of companies,
for the first nine months of 2020, 7.4 per cent fewer
leaks were registered in the world than in the same
period last year [InfoWatch, 2020]. On the contrary, in
Russia, the number of leaks increased by 5.6 per cent
over the same period. From January till September
2020, 9.93 billion records of personal data and pay-
ment information were leaked worldwide, of which
96.5 million were in Russia. The leaks distribution
by data type we present in Table 1.

During the same period, 52.6 per cent of leaks
worldwide occurred due to external influences. At
the same time, there was only 21 per cent of such
leaks in Russia, and more than 79 per cent of leaks
occurred due to internal violations. If a little more

than half of the violations of an internal nature are
recognised as intentional in the world, then in Russia,
there are more than 3/4 of such violations. In Russia,
the share of leaks caused by employees is twice as
high as in the world — more than 72 per cent. The
leaks distribution by culprit we present in Table 2.

More than 40 per cent of registered leaks in Russia
are in the high-tech and financial sectors — 21.9 per
cent and 18.9 per cent of cases, respectively. In the
world, the high — tech sector is in the first place with
a share of 19.4 per cent, and healthcare is in second
place — 16.4 per cent.

In Russia, the share of leaks associated with fraud-
ulent activities is three times higher, 10.3 per cent
versus 3.3 per cent. It means that violators, primar-
ily internal ones, still have many loopholes to take
advantage of information stolen from the corporate
circuit for direct profit.

The main channel of leaks remains the Network
(Browsers and the Cloud).

Also, in Russia, the share of leaks through paper
documentation remains relatively high. Despite the
rapid development of electronic document manage-
ment in recent years, a significant part of the data is
still stored and transmitted on paper.

The statistic shows that in 2019 internal leaks of
information constituting a trade (commercial) secret
occupy firmly the second place after the undisputed
leader — internal leaks of personal data: 75 and 12
per cent, respectively.

At the same time, it should be borne in mind that
leaks of information constituting a commercial se-
cret are intentional in 80 per cent of cases. Leaks of
personal data, on the contrary, are mostly accidental.

In the case of user data, more than half of the
leaks are accidental. In the case of other types of
data, most of the leaks occur due to deliberate ac-
tions. Intentional leaks count for commercial secrets
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Table 1

Distribution of leaks by data type: Russia-World, January-September 2020

Type of the data

In Russia (%) In the world (%)

Personal information
Payment (financial) information
State secret

Business secrets, know — how

85.9 80.1
2.0 5.6
6.7 4.7
5.4 9.6

Source: The authors.

(80 per cent), production secrets (88 per cent), and
state secrets (85 per cent).

At the same time, internal intentional leaks have
high latency. An internal violator “targeting” the theft
of the employer’s trade secrets is usually well aware
of where the information of interest is stored, how
and who controls the data transmission channels.
As a result, the leak of commercial secrets is either
not recorded at all or is discovered by the affected
company after the fact.

Internal leaks have powerful destructive potential.
The consequences of mistakes or malicious actions
of personnel can manifest themselves in property or
reputational losses and the suspension or liquidation
of the business.

The factors influencing the actions of the internal
violator are usually subjective and have a corrup-
tion component at their core [Kozlov & Noga, 2019].
When assessing the risk of implementing a business
project, it is necessary to consider these factors.

2 Subjective Risk Factors

What motivates the internal violator? The main
reasons are greed and negligence. The self-serving
and psychological motives for violations are al-
most the same as those of corruption [Vannovskaya,
2013]:

» The employee’s opinion that his work is unde-
servedly undervalued

« A significant difference in different categories
of employee’s wage

« High staff turnover, the presence of “tempo-
rary workers”, including among managers

e Lack of individual employee interest in
achieving the project aim, personal dissatisfaction

» Low qualification of the employee, his inabil-
ity to work on equal terms

» Company tolerance to minor violations

» The presence of double standards in the or-
ganisation when a certain category of employees
(managers) is allowed to violate the established
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rules. The employee believes that this is cheating
him, and he also has the right to cheat

» Excessive bureaucracy and insufficient con-
trol, when it is easier to circumvent the rules than
to comply with them.

Risk Parameters

Consider the above factors as some parameters
that affect the value of risk in the organisation. The
level of material satisfaction consists of wage and
household comfort. Several parameters can define
this level:

» The value of the deviation of the average
wage in the team from the average salary in the in-
dustry (region)

 The ratio of the average wage in the team to
the average wage in the industry

» The spread of employees’ wages (how much
they differ in the team), its dispersion.

The authors propose representing wage dispersion
as the standard deviation from the average value,
well described by the variance of a discrete random
variable — wage:

D(z)=M(z—M(2))*, 1)
where D (z) is the wage dispersion (the average of
the square of the deviation of the wage from the
average level), z — is a random variable — the em-
ployee’s wage, M (z) — is the average wage in the
team.

According to the author’s opinion, another im-
portant parameter that affects the organisation’s risk
is the professional level of employees. This level can
be represented as the ratio of the average employees
work experience in this area (in this direction) to the
average life cycle of products (products) produced
by this company.

Under the product life cycle, we will understand
the time required for its development, testing, or-
ganisation of production, production cycle, the period
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Table 2

Distribution of leaks by violators: Russia — World, January — September 2020

Leak’s violator

In Russia (%) In the world (%)

Head manager
System Administrators
Unprivileged employees
Former employees
Contractors

External attackers

5.0 2.6
0.0 0.1
721 36.5
2.0 0.9
1.0 2.2
29.1 577

Source: The authors.

of implementation and operation, during which its
technical support is carried out.
Thus, the professional level can be represented
in the following form:
s

P= i=1
nG ’

@)

where P — is the level of professionalism, S, — is the
employee’s work experience in this field, n is the
number of employees in the team, and G — is the
average life cycle of the products produced.

At the same time, it is worth noting that the more
technologically complex products usually have longer
life cycles. So, for example, it can take ten or more
years to develop an entirely new computer proces-
sor based on new architectural principles or create
a new aircraft. And to launch it into production with
the solution of numerous organisational issues may
take as many more years.

Also, the following parameters can be attributed
to subjective risk factors:

 The level of the employee’s interest in the re-
sults of the work, defined as the time of work on
this project (usually, if the employee is interested
in the result, then he tries, all other things being
equal, to stay in the team until the final result is
obtained)

* The level of comfort in the team can be deter-
mined by the parameter — the lifetime of the sta-
ble core of the team (the stable core of the team). If
it were not comfortable to work in this team, then
employees would try to leave it, and there would be
a significant turnover of personnel

» The level of commitment to the company’s
goals is a parameter similar to the previous one,
only, in this case, it refers to a large company and

is instead an individual parameter for a particular
employee, i.e., the longer the employee’s work ex-
perience in this company, the higher the level of
commitment

 The level of compliance of the vector of deci-
sions made with the company’s goals and their im-
pact on other team members. This parameter rath-
er refers to top managers who make decisions or
influence the adoption of certain managerial deci-
sions. For example, a company produces aeroplanes
or cars but has faced some financial issues. The fi-
nancial manager, first of all, should reduce expens-
es. But, if at the same time to reduce the division of
designers — designers, so in the future will not be
created new aircraft or cars and the company will
not be competitive, and may even lose business.

The human (subjective) factor is essential when
assessing the risk for any enterprise and high-tech
companies working with new technologies — espe-
cially. Underestimating this can negatively affect the
performance of the enterprise (company).

Therefore, it is necessary to maintain a decent
wage level, strive to maintain and, if possible, create
a healthy climate in the team based on the profes-
sionalism of its employees and provide opportunities
for career and material growth to reduce the risk
associated with subjective factors.

But how to assess this risk depend on the listed
parameters, which is not clearly expressed?

In this case, the authors suggest using the fuzzy
logic method for its evaluation and using the MAT-
LAB Fuzzy Logic Toolbox package for its implemen-
tation [Matlab, 2019].

3 Risk Assessment
In assessing the risk according to the proposed
methodology, it is possible to build the depend-
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Table 3
Wage (salary) level

Relation to the The boundaries of
N Wage level Possible actions of employees average wage in the the term “Wage
sector level”
1 Low Employees desire to find another 01-0.75 01-04
job or to sell secrets
2 Middle Stable job, but gettlng. a better offer, 0.75-1.50 04-0.6
leave your job
3 High The desire to maintain this level More 1.50 0.6-1.0

Source: The authors.

Table 4
Wage dispersion level

Wage dispersion

The boundaries of the term

N level Possible actions of employees “Wage dispersion level”
1 High Employees’ desire tz::r(:tasnother job or to sell 07-1.0
7 Middle Stable job, but gettingjsbbetter offer, leave your 0.3-0.8
3 Low The desire to maintain this level 0.1-04

Source: The authors.

ence of the risk on all of the above parameters and

some other specific ones to specific enterprises. But
in this case, the description and calculation will be

pretty time-consuming. A variant of the risk as-
sessment with dependence on five parameters is

given in the paper [Kozlov & Noga, 2020].

For simplicity and clarity, we will evaluate the
dependence of risk on three parameters, which, ac-
cording to the authors, are one of the main param-
eters that influence subjective risk factors.

In the proposed example, these parameters will
be:

» The wage level U(z) — the ratio of the average
salary in the team M (z) to the average wage in the
industry M

» The wage dispersion level in the team D(z)

« The professional level of the employees P.

In this case, the risk R can be represented as a
function of these parameters.

R=RU®), D(z), P) 3

The fuzzy logic method involves working with
linguistic variables. The correspondence of linguistic
variables to the above parameters we show in Tables
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3-5. We will consider all variables normalised with
values in the range from 0 to 1.

If the company’s wage level is significantly lower
than the average in the industry, then the company
will inevitably face problems with recruiting qualified
specialists. The exception may be cases of temporary
difficulties with the prospect of overcoming them
in the future.

Significant dispersion of the employees’ wage in
the team can also cause many negative cases, such as
envy and betrayal of the company’s interests based
on “underestimating” the personal employee’s con-
tribution.

Moral and material dissatisfaction can push an
employee (employees) to find a new job with better
working conditions and simply to sell the technical
and technological secrets of the company.

The professional level also has a significant im-
pact on the risk assessment. The lower this level, the
more likely it is to make mistakes that can lead to
the failure of the project deadlines, its price rise, or
even to the inability to achieve the aim.

In addition, less professional employees are more
prone to overestimating their importance and some-
times do not listen to the opinions of more experi-
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Table 5
Professional level

Professional

The boundaries of the term

N level Possible consequences “Professional level”
1 Low Possible adoption of technically incorrect decisions 0.1-0.3
7 Middle Increas:mg the.prOJect |mplemeptat|on tlme, reducing 0.3-0.8
its quality due to insufficient experience
3 High There may be minor deviations in the implementation More 0.8

time

Source: The authors.

Table 6
Output variable Risk (yR)

Risk level The boundaries of the term “Risk level”
1 Insignificant 0.0-0.20
2 Acceptable 0.16-0.50
3 High 0.45-1.00

Source: The authors.

enced employees. And if they are also top managers,
head of the team or company divisions with the vote
right, then the consequences can be very harmful.
The linguistic variable with the corresponding pro-
fessional level we show in Table 5.

Finally, an approximate risk estimation algorithm
based on the provisions of fuzzy logic and fuzzy set
theory, considering the uncertainties that arise in
any organisation, can be implemented using the
as mentioned above MATLAB Fuzzy Logic Toolbox
package. When using the production rules of fuzzy
logic, we reproduce the output mechanism taking
into account the three input variables. Such variables
for assessing the risk associated with subjective (hu-
man) factors in our example, as already mentioned
above, are:

» wage level

» wage dispersion level

» employees professional level.

Each of the listed input variables, as indicated
above, is evaluated on its own scale. Next, these input
variables are passed to the Fuzzy Logic Toolbox, and
the output is the value of the output variable — risk.

As a visual example, consider a simplified risk
calculation in the Fuzzy Logic Toolbox with three
input variables: wage level — x, wage dispersion
level — x,, and professional level —x,

There is the variable risk — y, (Risk). That is, now
equation (3) has the following form

Vo= R(x,, %, X,). 4

We apply the Mamdani model and assume that
the membership functions of the three variables
have a trapezoidal form. The risk membership
function has the shape of a Gaussian curve. The
ranges of changes in terms specified in Tables
3-5, respectively, are used to evaluate the input
variables. For the output variable y,, we use three
terms with the measurement range specified in
Table 6.

Further, to form a fuzzy knowledge base, we
introduce production rules, partially presented
in Table 7.

A graphical representation of the Mamdani
knowledge base in the Fuzzy Logic Toolbox rules
editor we show in Figure 1.

After defuzzification, you can get a specific
value of the output risk parameter for specific
values of the input variables and compare it with
the acceptable value. The presented package al-
lows you to visualise the dependence of the risk
on the input parameters (4).

According to the given input parameters, it is
possible to build three three-dimensional graphs.
At the same time, on each of them, you can see the
dependence of the risk for two parameters with
fixed values of the third. To determine the opti-
mal values of the parameters with an acceptable
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Table 7
Fuzzy knowledge base, production rules
N Wage level Wage dispersion level Professional level Risk level
1 Low High Low High
2 Low High Middle High
3 Low High High High
4 Low Middle Low High
24 High Middle High Insignificant
25 High Low Low Acceptable
26 High Low Middle Insignificant
27 High Low High Insignificant
Source: The authors.
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Figure 1. Mamdani’s fuzzy knowledge base in the Rules Editor.

Source: The authors.

risk value, you need to do some work, varying the
values of the input parameters. Naturally, this is
only possible within the limits of the restrictions
imposed on these values, which are available to
implement real projects.

Figure 2 shows a visualisation of the risk de-
pendence at the wage dispersion level and the
wage level. This relationship indicates that the
smaller the wage dispersion level in the team and
the higher the overall wage level, the lower risks
associated with the manifestation of subjective
(human) factors.

You can also visualise the risk dependence at
the professional level and the wage level (Figure
3), the professional level and the wage dispersion
level (Figure 4). In this example, to simplify the
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presentation of the basic principles of the pro-
posed method for assessing the dependence of
risk on subjective factors, each linguistic variable
corresponds to only three intervals of values. In
fact, you may need more of them to get more ac-
curate results. And there may be more variables
themselves. For example, to assess the level of
wage, it may be necessary to compare it with the
level of living in a given country and the wage
level of a specialist in a given professional field
in other countries.

It is necessary to understand that the further
use of new values and new variables increases the
number of production rules and complicates their
writing. It, in turn, may lead to the need to attract
additional experts.
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o o Y Wage,evel

wage,ispertion evel

Figure 2.Visualisation of the risk dependence at the wage dispersion level (x,) and the wage level (x,)

Source: The authors.

Professional evel ° o 0.1 Wagaevel

Figure 3.Visualisation of the risk dependence at the professional level (x,) and the wage level (x,).

Source: The authors.

_-5045-.
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Figure 4. Visualisation of the risk dependence at the professional level (x,) and the wage dispersion level (x,).

Source: The authors.
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4 Conclusion

The proposed method allows us to assess the de-
pendence of risk on subjective factors that are
difficult to describe mathematically strictly. The
article provides an example of evaluating the
dependence of risk at the wage level, the wage
dispersion (spread) level and the professional
employees level. This method allows us to as-
sess the dependence of risk on other subjective
parameters, both those given in this paper and
those that may be specific only for specific enter-
prises or company.

Using the above methodology, in conditions of
great uncertainty and non-obvious mutual influence
of parameters at different stages of the life cycle of
various business projects, it becomes possible:

1. Determine the impact of various subjective risk
factors on the level of a particular business project
implementing risk

2. Assess the level of risk, both at the moment and
at various stages of the business project life cycle

3. Optimise the personnel policy of the enterprise
(organisation), which reduces the risk of leakage of
high-tech (know-how) information, as well as the
leakage of “brains”, to stabilise the staff

4. Develop recommendations for the formation of
a healthy atmosphere in the team, which will allow
you to optimally solve the tasks set to achieve the
aims of the business projects

5. Avoid erroneous management decisions, es-
pecially those related to the company or staff “op-
timisation”.

The proposed methodology can be used in in-
dividual enterprise and organisations with a com-
plex network structure. For example, there may be
a company with a large number of branches. If so, it
is necessary to compare the wage level not within
the team but between branches.
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