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Modelling of Financial Markets  
and Risk-Management

This special issue of the journal contains several papers discovering different aspects of financial 
markets modelling, option pricing and quantitative risk-management.

The paper by Campoliety, Kato, and Makarov studied a new pricing model with stochastic/rand-
omized volatilities. The models considered here assume that the underlying asset price distributions 
admit fat tails, which is an attractive feature of the paper. The authors exploit a randomized proce-
dure on the volatility of the Geometrical Brownian Motion model to construct new pricing models 
developed in detail for the randomized gamma and randomized inverse gamma cases. Both models 
are characterized by shape and scale parameters and admit closed form analytical density expres-
sions allowing non-arbitrage option prices. The authors have shown that the randomized gamma 
and inverse gamma models are accurately calibrated to market equity option data.

The paper by Kozlov and Noga proposes a methodology for assessing the risk associated with 
subjective factors that may affect a business project in the context of its information security. The 
technique developed by the authors uses the fuzzy logic method, which allows determining the de-
pendence of the risks affecting the achievement of the goal of such a business project. The proposed 
methodology helps avoid incorrect management decisions in the sense of the cost of the project and 
the effectiveness of the company’s personnel policy.

In the paper by Maximov and Melnikov, the authors investigated the CVaR methodology of risk-
management for spread options. Besides pure theoretical results, an approximative method to de-
termine CVaR is systematically developed. They have shown that the approach works very well in 
comparison with other methods exploited in this area. Moreover, the paper demonstrates interesting 
applications to the field of regulatory capital towards the Basel Committee recommendations.

The paper by Vasilev and Melnikov is devoted to the method of completions of financial markets. 
The leading and promising idea of such a method is to replace the set of risk-neutral measures with 
the equivalent set of completions of the incomplete market under considerations. The paper provides 
an exposition of this approach which may lead to the dual theory of option pricing in incomplete 
markets and the markets with different constraints. The paper shows the potential of this method in 
solving risk-management problems in the context of optimal investment and partial hedging.

In the paper by Smirnov and Sotnikov, the authors compared option process in the Bachelier model 
and the Black-Scholes model with the help of the probability metrics technique. They showed that 
it is necessary to use different metrics for different options. The authors also demonstrate how to 
calibrate such metrics by giving illustrative examples.

Dr Alexander Melnikov

Editorial
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Option Pricing under Randomised GBM Models
Giuseppe Campolietia, Hiromichi Katob, Roman Makarovc

Wilfrid Laurier University, Waterloo, ontario, Canada
ahttps://orcid.org/0000-0002-6316-7313; bhttps://orcid.org/0000-0002-3724-2404

chttps://orcid.org/0000-0002-0935-9445

ABSTRACT
By employing a randomisation procedure on the variance parameter of the standard geometric Brownian 
motion (GBM) model, we construct new families of analytically tractable asset pricing models. in particular, 
we develop two explicit families of processes that are respectively referred to as the randomised gamma (G) 
and randomised inverse gamma (iG) models, both characterised by a shape and scale parameter. Both models 
admit relatively simple closed-form analytical expressions for the transition density and the no-arbitrage 
prices of standard European-style options whose Black-Scholes implied volatilities exhibit symmetric smiles 
in the log-forward moneyness. Surprisingly, for integer-valued shape parameter and arbitrary positive real 
scale parameter, the analytical option pricing formulas involve only elementary functions and are even more 
straightforward than the standard (constant volatility) Black-Scholes (GBM) pricing formulas. Moreover, we 
show some interesting characteristics of the risk-neutral transition densities of the randomised G and iG 
models, both exhibiting fat tails. In fact, the randomised IG density only has finite moments of the order 
less than or equal to one. In contrast, the randomised G density has a finite first moment with finite higher 
moments depending on the time-to-maturity and its scale parameter. We show how the randomised G and 
IG models are efficiently and accurately calibrated to market equity option data, having pronounced implied 
volatility smiles across several strikes and maturities. We also calibrate the same option data to the well-
known SABR (Stochastic Alpha Beta Rho) model.
Keywords: static randomisation; pricing European-style options; Black-Scholes implied volatility; calibration; 
randomised GBM models; SABR model

For citation: Campolieti, G., Kato, H., & Makarov, R. (2021). Option pricing under randomised GBM models. 
Review of Business and Economics Studies, 9(3),7-26. dOI: 10.26794/2308-944X-2021-9-3-7-26

ОРИГИНАЛЬНАЯ СТАТЬЯ

Оценка стоимости опционов 
для рандомизированных моделей 
геометрического броуновского движения

Джузеппе Камполиети, Хиромичи Като, Роман Макаров
Университет Уилфрида Лорье, Ватерлоо, Онтарио, Канада

АННОТАЦИЯ
Используя процедуру рандомизации дисперсии стандартной модели геометрического Броунского 
движения (ГБД), авторы построили новые семейства аналитически решаемых моделей ценообра-
зования финансовых активов. В частности, были разработаны два семейства процессов, а именно 
модели —  рандомизированная гамма (Г) и рандомизированная обратная гамма (ОГ), которые ха-
рактеризуются параметрами формы и масштаба. Обе модели допускают довольно простые анали-
тические выражения для плотности перехода и безарбитражной цены стандартных европейских 

© Giuseppe Campolieti, Hiromichi Kato, Roman Makarov, 2021
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1 Introduction
Mathematicians have developed stochastic 
models to value options. The geometric Brown-
ian motion (GBM) model is known as one of the 
simplest continuous-time models that admit 
analytical closed-form formulas for pricing vari-
ous options (Black & Scholes, 1973). The GBM 
model is a complete market model where risks 
can be perfectly hedged. A significant limitation 
is that there is a discrepancy between antici-
pated Black-Scholes (BS) prices and the market 
option prices since the model fails to capture 
price movements for extreme events (MacBeth & 
Merville, 1979). Local volatility diffusion models 
(also known as state-dependent volatility mod-
els) are more flexible continuous-time models 
known for describing the behaviour of implied 
volatility smile and skew patterns observed in 
a marketplace. Local volatility diffusion models 
are also complete market models like the GBM 
model. In fact, the (one-dimensional) GBM mod-
el is simply a local volatility model with constant 
local volatility.

In some cases, nonlinear local volatility mod-
els admit closed-form formulas for pricing vari-
ous options. Families of local volatility diffusion 
models that can be analytically solved in closed 
form have been developed in several papers, see, 
e. g., Albanese, Campolieti, et al. (2001) and Cam-
polieti and Makarov (2012). They are obtained by 
applying the “diffusion canonical transformation” 
to solvable underlying diffusions such as the Bes-
sel, Cox–Ingersoll–Ross and OrnsteinUhlenbeck 
processes. These models have been shown to cali-
brate quite well to equity and FX options. One 

drawback of local volatility diffusion models is the 
inherent perfect correlation between the underly-
ing asset price and the volatility. In some cases, 
this contradicts the empirical evidence that they 
should have an imperfect negative correlation 
(Rubinstein, 1985).

The stock market is incomplete in many situ-
ations as traders cannot use options for hedging 
all the risks. Stochastic volatility models are in-
complete and assume that volatility is a random 
process. We can make the movements of the un-
derlying asset price and the volatility to be nega-
tively correlated. A first example is the Hull and 
White stochastic volatility model. Hull and White 
(1987) derived the closed-form pricing formulas 
for European vanilla options under their model 
with zero correlation. They are obtained by aver-
aging the BS prices over the integrated squared 
instantaneous volatility process. Theoretical re-
sults of implied volatility under the GBM model 
with stochastic volatility are given in Renault & 
Touzi’s paper (1996). They have shown that an 
implied volatility surface is an even function of 
the log-forward moneyness and necessarily pro-
duces a smile effect under the models with zero 
correlation. Thus, these models may be used to 
calibrate to option price market data.

A second example is the Heston model. Heston 
(1993) successfully applied the Fourier transform 
method to evaluate European vanilla options with 
an arbitrary correlation between the asset price 
and the volatility. He also showed that the dis-
tribution of asset returns is asymmetric. Also, he 
found that when the marginal distributions of 
the asset returns and the volatility are negatively 

Option Pricing under Randomised GBM Models

опционов. Волатильность Блэка-Шоулза проявляет симметричную «улыбку» для логарифмически 
форвардной денежности. Примечательно, но для целых значений параметра формы и произволь-
ного положительного параметра масштаба аналитические формулы ценообразования вариантов 
включают только элементарные функции и даже являются проще стандартных (для постоянной во-
латильности) формул ценообразования Блэка-Шоулза (модель ГБД). В статье даны характеристики 
риск-нейтральной плотностей перехода для рандомизированных моделей Г и ОГ, которые демон-
стрируют «тяжелые хвосты». Рандомизированные плотности для модели ОГ имеют только конечные 
моменты порядка меньше или равные одному, в то время как рандомизированная плотность для 
модели Г имеет конечный первый момент и конечные моменты более высокого порядка в зави-
симости от срока погашения опциона и параметра масштаба. Показано, как рандомизированные 
модели Г и ОГ могут быть эффективно и точно откалиброваны для рыночных значений опционов, 
демонстрирующих «улыбку» волатильности для различных цен исполнения и сроков погашения. 
Откалибровка проведена с помощью модели SABR (Stochastic Alpha Beta Rho). Проведено сравне-
ние этих моделей.
Ключевые слова: статическая рандомизация; ценообразование опционов европейского стиля; подра-
зумеваемая волатильность Блэка-Шоулза; калибровка; рандомизированные модели GBM; модель SABR
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skewed. Moreover, the BS out-of-the-money (OTM) 
option prices are negatively biased (i. e., BS OTM 
option prices are usually smaller when compared 
to market prices). BS in-the-money (ITM) option 
prices are positively biased.

A third example is the SABR model introduced 
by Hagan et al. (2002). The implied volatility curve 
captured by the SABR model gives consistency 
with the observed marketplace in dynamics. Other 
examples are regime-switching models. Bollen 
demonstrated that the model with two regimes 
could produce pronounced symmetric smiles in 
the log-forward moneyness, giving consistency 
with the higher BS pricing errors for shorter ma-
turities (Bollen, 1998).

This paper constructs new pricing models with 
randomised volatility, where underlying asset 
price distributions exhibit fat tails and admit sim-
ple closed-form analytical expressions for stand-
ard European-style option prices. In particular, 
we assume that: 1) a unique risk-neutral pricing 
measure exists (in advance), 2) the underlying 
asset price processes have a finite first moment 
but possibly infinite higher moments, 3) there are 
no correlations between the asset prices and their 
volatility, and 4) the volatility (squared volatil-
ity) coefficient is a random variable with known 
probability density function (PDF). The assump-
tions 1) and 2) are based on the Put-Call Parity 
methodology in Taleb (2015). This methodology 
neglects the strong (but surreal) assumptions 
from the dynamic hedging argument and exhibits 
better practical phenomena in financial markets. 
The assumptions 1)-4) allow for deriving closed-
form expressions (under our new pricing models) 
by taking a mathematics expectation under dif-
fusion models over the underlying probability 
distribution for the volatility. Our methodology 
for computing option prices is closely related to 
the Bayesian framework in the GBM model studied 
by Darsinos and Satchell (2007). They considered 
randomising the volatility where the variance fol-
lows the inverse gamma distribution. They were 
successful in deriving analytically closed-form 
expressions for the joint PDF of the asset price 
and the volatility, as well as the marginal PDF of 
the asset price. However, they could not determine 
the call pricing formulas analytically, and the 
option prices could only be obtained numerically.

This paper is organised as follows. Section 2 
proposes a general theory of static randomisation 

under the GBM model, including the almost eve-
rywhere (a. e.) existence of transition probability 
density functions (PDF) of newly constructed as-
set price processes. We then derive the transition 
PDFs of the asset price process with static ran-
domisation of the parameter under two families of 
static randomisation, namely the gamma (G) and 
the inverse gamma (IG) randomisation. Section 
3 states the main results of this paper, including 
the closed-form expressions of a European vanilla 
call option and the characteristics of shapes of 
the implied volatility. In Section 4, we conduct 
our numerical experiments pertaining to model 
calibrations to market option data. Finally, we 
state some concluding remarks with some discus-
sions of future applications.

2 Randomised GBM Models and their 
Characteristics

Let 

0( , , ,{ } )t t ≥Ω    be some fixed filtered (risk-
neutral) probability space where 

0{ }t t ≥  is the 
natural filtration generated by the  -BM. As-
sume a two-asset economy where the risky asset 
price (diffusion) process 0{ }t tS ≥  follows a GBM 
with stochastic differential equation (SDE):



0= ; > 0,t
t

t

dS
rdt vdW S

S
+

where r  is the constant risk-free rate, v  is a 
constant variance and 

0{ }t tW ≥  is a standard 
 -BM (i. e., Brownian motion under the risk-
neutral measure with a bank account as numé-
raire). The (risk-neutral) transition PDF for this 
process (for a given variance v ) is time-ho-
mogeneous, depending on the time difference 

T tτ ≡ − :

      

 

,

1 2( ) /2
2

( ) ( | = ) =

1
; , > 0, > 0,

2

t S T T t

x v v

S dy S dy S S

e dy S y
y v

− + τ τ

∈ ≡ ∈

= τ
π τ

 
,  (1)

where = ln( / )x y S r− τ . We now consider ran-
domising the parameter v  by introducing the 
random variable   to distinguish it from the 
parameter v . Then, we can formulate the pric-
ing function for a standard European-style op-
tion with payoff function Λ  by:



,( , ) = [ ( )] ( ), = .r
t S TV S e S dv T t− τ

Ω
τ Λ µ τ −∫  


 (2)

Option Pricing under Randomised GBM Models
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Note that V  denotes the pricing function for a given choice of the random variable   on a sample 
space +Ω ⊂  , where µ  is a probability measure for  .1 In the case of an absolutely continuous 
random variable   we have ( ) = ( )dv v dvµ µ   with PDF ( ).vµ  The (marginal) transition PDF for the 
asset price process with randomised volatility (the randomised GBM process), denoted by 0{ }t tS ≥

  
is defined for fixed , > 0Sτ  as: 2

        
 

, ,( ) ( ) ( )t S t ST TS dy S dy dv
Ω

∈ ≡ ∈ µ∫ 



  (3)

We can easily show that the transition PDF integrates to one:

 

, ,
0 0

( ) = ( ) ( ) =1.t S t ST TS dy S dy dv
∞ ∞

Ω

 ∈ ∈ µ  ∫ ∫ ∫ 




By a simple application of Fubini’s theorem, the transition PDF for 0{ }t tS ≥
  is well-defined (a. e.) 

for every fixed , > 0Sτ . We can easily show that the discounted randomised process 0{ }rt
t te S−

≥
  is a 

 -martingale process 3

 

, | = = .r
t S T T tS S S S Se τ   ≡      

In what follows, we specify the distribution of  in two separate ways: as a gamma random vari-
able and as an inverse gamma random variable.

We now look at the transition PDF for the randomised asset price process under the gamma 
randomisation (the randomised G process), denoted by ( , )

0{ }G
t tS θ λ

≥ , where  follows the gamma 
distribution with shape parameter θ and scale parameter λ (i. e., ( , )G θ λ  ). The PDF of  is

1 /
( , ) ( , )

1
( ) = ; , > 0, = ,

( )
v

G Gdv v e dvθ− − λ
θ λ θ λ +θµ θ λ Ω

λ Γ θ


where 1

0
( ) = tt e dt

∞ θ− −Γ θ ∫ is the gamma function. We state a useful integral formula (see Prudnikov, 
Brychkov, & Marichev, 1986, Eq. 2.3.16.1):

   
( )

/2
1 /

0
= 2 K 2 ; , , > 0,

r
r pv q v

r

q
v e dv pq r p q

p

∞ − − −  
∈  ∫ 

 
(4)

where K ν is the modified Bessel function of the second kind of order ν . It gives the analytical ex-
pression for the transition PDF for ( , )

0{ }G
t tS θ λ

≥ :



/2 1/4/2 2
( , )

, 1/2

2 | | 8
( ) = K .

8 2( )

x
G

t S T

e x x
S dy dy

y

θ −θ−
θ λ

θ−

  λτ + λτ ∈      λτ + λτ πΓ θ λτ 


1 One may think that   is a random variable on ( , , )Ω    where Ω  is the range of   and µ  is the distribution measure. 

2 Note that  ( ) , ( ; , )t S TS dy p S y dyτ∈ ≡
 , where = T tτ −  and 

 ( ; , ) ( ; , | )p S y p S y vτ τ≡  is the transition PDF 
 
(in (1)) of the GBM process for a given volatility parameter value v . Hence,
 

 

 



 

, ( ) ( ; , ) = ( ; , | ) ( )t s TS dy p S y p S y v dv
dy

τ τ µ
Ω

∈ ≡ ∫






is the transition PDF of the randomized asset price process 

 
 
 0{ }t tS ≥



.

3 Recall that the discounted asset price process under the GBM model 0{ }rt
t te S−

≥  is a  -martingale process. Here an 
 
 underlying filtered probability space for the randomized process is 

0( , , ,{ } )t t≥Ω   where ( ,0 )t uS u tσ≡ ≤ ≤  . 
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Where = ln( / )x y S r− τ . Note that for = nθ ∈ , the transition PDF can be represented by el-
ementary functions. The asymptotic behaviours of the transition PDF at the endpoints are:

 ( ) 13/2 (8 )/4( , )
,

3/2 (8 )/4 1

ln(1/ ) as 0,( )

(ln ) as .

G
t S T y y yS dy

dy y y y

θ−− + +λτ λτθ λ

− − +λτ λτ θ−

 →∈ 


→ ∞




Based on these asymptotic expressions, we conclude that the α -moment of the randomised G 
process:

 ( ) 

( , ) ( , )
, ,

0

1 8
( ) < iff < .

2 4
G G

t S t ST TS y S dy
∞αθ λ α θ λ + λτ  ≡ ∈ ∞ α −   λτ∫ 

It implies the first moment exists, but the second moment exists iff <1λτ . Furthermore, we have 
an explicit formula for the second moment:

 ( )2( , ) 2 2
, = (1 ) ; for <1.G r

t S TS S eθ λ τ −θ  − λτ λτ  


Let us now consider the transition PDF for the asset price process under the inverse gamma ran-
domisation (the randomised IG process), denoted by ( , )

0{ }IG
t tS θ λ

≥ . Assume that  follows the inverse 
gamma distribution with shape parameter θ and scale parameter λ (i. e., ( , )IG θ λ  ). The PDF of 
 is

1
/

( , ) ( , )

1
( ) = ; , > 0, = .

( )
v

IG IGdv e dv
v

θ+θ
−λ

θ λ θ λ +
λ  µ θ λ Ω  Γ θ



By using the integral identity in (4) we obtain the transition PDF for ( , )
0{ }IG

t tS θ λ
≥ :

 ( )
/2 2/2 1/4( , ) 2

, 1/2

2
( ) = 2 K ,

2 2( )

x
IG

t S T

e x
S dy x dy

y

θ− −θ −θ λ
θ+

 λτ + λτ ∈ + λτ    πΓ θ  


where = ln( / )x y S r− τ . The asymptotics of the transition PDF are now as follows:

 ( ) 1( , ) 1
,

2 1

( ) ln(1/ ) as 0,

(ln ) as .

IG
t S TS dy y y y

dy y y y

−θ−θ λ −

− −θ−

∈  →


→ ∞




These two asymptotics give

 ( )( , )
, < iff 0 1.G

t S TS
αθ λ  ∞ ≤ α ≤  



We can see from Figures 1 and 2 that the GBM has the thinnest tail among the three models for 
=1,2θ . The left plot in Figure 1 shows that for =1θ , the randomised G process has a thinner tail 

than the randomised IG process for =1θ . The randomised G process appears to have the thickest 
tail among the three when = 2θ , but eventually, the randomised G process tails off faster than the 
randomised IG process, as shown at the right plot in Figure 2. It is interesting to see that the PDF of 
the randomised G process is uniform for ry Se τ≤ at the right plot in Figure 1. We can also observe 
that the PDF of the randomised G process is not differentiable at = ry Se τ since K ( )zν is not differ-
entiable at = 0z .

Option Pricing under Randomised GBM Models
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3 Main Results
The conditional risk-neutral probability that the randomised asset price process is above the strike 
K at a time T can be written as elementary analytical functions for = nθ ∈ .4 The reader may re-
fer to Appendix 6 for the details. It helps us obtain analytical pricing formulas for European vanilla 
options. We will illustrate it in this section. The price of a European vanilla call option, denoted by 

( , ; , )C S K rτ , can be written in terms of  ,t S and  ,t S . Here  

( )
, ,

S
t S t S≡  is an equivalent martingale 

measure with the original asset (e. g., stock) price process 0{ }t tS ≥ as the numéraire. We have

     
 



, ,
( , ; , )

( , ) = ( > ) ( > )m
t S t ST T

C S K r
C m S K e S K

S
−τ

τ ≡ −  


,  (5)

where t is the current time, T is the expiry time, =T tτ − is the time to maturity and 
ln( / )m S K r≡ + τ is the log-forward moneyness.5 For the randomised G process with = nθ ∈ , we 

have (call price divided by the spot S ):

       



1/4
/2

( , )

1

1/2
=0

| |
( , ) = (1 )

8

1 2 | | | | 8
K ,

! 28

m m
G n

kn

k
k

m
C m e e

m m

k

− + −
λ

−

+

λτ τ − +   + λτπ

   + λτ×    λτ + λτ λτ ∑
 

(6)

where ( ) max{ ,0}x x+ ≡ . For the randomised IG process with = nθ ∈ , we have

         



12 1/4 2
/2

( , ) 1/22
=0

( 2 ) 1 2
( , ) =1 K .

! 22 2

k
n

m
IG n k

k

m m
C m e

k m

−
−

λ −

  + λτ λτ + λττ −   π  + λτ  
∑

 

(7)

We derive general formulas for the main Greeks of a European vanilla call option under randomi-
sation. The general formulas are summarised in Table 1.

It can be shown that the option prices in (6) and (7) retain the symmetry property (see Renault & 
Touzi, 1996, Prop. 3.1),

 ( , ) = (1 ) ( , ),m mC m e e C m− −τ − + τ − 

and exhibit symmetric smiles in the BS implied volatility. In Figure 3, we can see that for given > 0λ , 
> 0τ and log-forward moneyness m , the BS implied volatility is increasing in θ , and deep in- (and 

out-) of-the-money option (i. e., large values of m in absolute term) prices are more sensitive to the 
parameter θ than near in- (and out-) of-the-money option (i. e., small vale of m in absolute term) pric-
es. In Figure 4, we can see that for given > 0λ , > 0τ and log-forward moneyness m , the BS implied 
volatility is decreasing in θ , and deep in- (and out-) of-the-money option prices are less sensitive to 
the parameter θ than near in- (and out-) of-the-money options. Both figures show symmetric smile 
effects. We can also see that the BS implied volatility under the gamma randomisation exhibits the 
V-shaped (i. e., locally concave) smile. In contrast, the BS implied volatility under the inverse gamma 
randomisation displays the U-shaped (i. e., locally convex) smile. We will show in the next section that 
the inverse gamma randomisation model calibrates well to some U-shaped market volatility. Hence, 
it may be helpful for practitioners to employ this model. However, the gamma randomisation model 
does not commonly fit well as we rarely see market volatility with concave smiles in practice.

4 For θ ∉ , we can derive the at-the-money forward (ATMF) option prices in closed-form in terms of the hypergeometric func-
tions. The reader may refer to Appendix 7 for the details.

5 Throughout, we denote ( , , ) = ln( / )m m S K S K rτ τ≡ + to avoid clutter.

Option Pricing under Randomised GBM Models
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4 Numerical Example
In this section, we calibrate our models to some market option data. We extracted the market data 
for the Coca-Cola European call options with spot time on April 2, 2019. The market data contains 
354 sample data points with 15 distinct values of the maturity time. The market volatility in the 
data set exhibits pronounced smiles across different strikes for short times to maturity and skewed 
smiles for long times to maturity. We decided to compare the performance of the new models with 
the SABR model because the latter admits a closed-form yet simple celebrated formula for approxi-
mate implied volatility. We calibrated the models to the market data among classes consisting of 
all observations with the same maturity times because the SABR model calibrates well at a single 
maturity but does not calibrate well at multiple maturities (Wu, 2012). The summary of the market 
data used here you can found in Table 2. The reader may refer to Tables 3, 4, 5 and Figures 5, 6, 7, 8 
for the results.

Suppose that *
iV , *

iΣ are the observed market option price and market volatility respectively for 
=1, ,i N τ

where = #N τ τ is the number of observations with maturity time τ , and ,i iKτ are the 
corresponding maturity time and strike price. Define = { : =1, , }iT i Nτ  as the collection of maturity 
times in the data set arranged in increasing order. Let = { | = }ii Tτ τ τ ∈ be the collection of observa-
tions with maturity time Tτ ∈ . For each τ , we use the usual root mean squared error (RMSE) as a loss 
function ( , )L θ λ for the model calibration under the gamma and the inverse gamma randomisation:

( )2*( , ; )

( , ) = ; ,

i i i
i

V S K V

L T
N

∈ τ
τ

τ

τ −

θ λ τ ∈
∑


where = #N τ τ is the number of observations with maturity time τ , and ,i iKτ are the correspond-
ing maturity time and strike price. Alternatively, for the SABR model, we use a formula from Hagan 
et al. (2002), denoted by SABRσ , to find optimal values of parameters that minimise the difference 
between the corresponding BS implied volatility and the market volatility in the RMSE sense. Hence, 
the loss function for the SABR model calibration is:

( )2*
SABR ( , , ; )

( , , , ) = ; ,

i i i
i

S K

L T
N

∈ τ
τ

τ

σ τ σ − Σ

α β σ ρ τ ∈
∑


For the SABR model parameters, we attempted to find optimal values for the parameters 
( , , ) ( ( ), ( ), ( ))α σ ρ ≡ α β σ β ρ β across different values of [ 1,0]β ∈ − , and find the optimal value of β by 
comparing the associated RMSEs.6 We found that = 1β − gave the lowest RMSE.

Based on Tables 3, 4, and 5, we found that: the inverse gamma randomisation performs better 
than the gamma randomisation because the RMSE is smaller for fixed τ . Figures 5, 6, 7, and 8 sug-
gest that the inverse gamma randomisation performs quite well for short maturity times, and the 
SABR model fits almost perfectly.

5 Conclusion
In this paper, we constructed the randomised GBM processes under the gamma and the inverse 
gamma randomisation, namely the randomised G and IG processes. We observed that both processes 
had thicker tails than the GBM process, and the randomised IG process had the heaviest tails among 
the three. We obtained explicit no-arbitrage pricing formulas for European vanilla call options with 

6 In our data set, we saw that β was not a robust parameter since the optimal value for β varies with different initial values of 
β . So we used the calibration method in Hagan et al. (2002) to find β in advance. There are different approaches for the SABR 
model calibration, see e. g., West (2005).

Option Pricing under Randomised GBM Models
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integer-valued shape parameter and ATMF op-
tion prices with real-valued shape parameter. 
Surprisingly, the pricing formulas presented in 
this paper are even simpler than the classical 
GBM model as they are expressed as elementa-
ry analytical functions. The option prices were 
also obtained numerically in an efficient man-
ner. The European-style option prices under the 
new processes exhibit symmetric smiles in the 
log-forward moneyness. We calibrated the ran-
domised GBM models and the SABR model to 
the actual market option data set from Coca-Co-

la. We found that the inverse gamma randomi-
sation fitted well, especially for short maturity 
times.

Further applications of the randomised models 
will be discussed in other planned future papers. 
We will provide analytical extensions that take 
into account imposed killing, leading to closed-
form formulas for specific exotic options under the 
randomised models. We will build a randomisation 
framework in a multi-asset economy and examine 
the analytical tractability of other complex deriva-
tives for payoffs, depending on two or more assets.
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Table 1
Greeks of a European vanilla call option under randomisation

Name Notation Formula (Note: ln
S

m r
K

≡ + τ )

delta
C

S

∂
∆ ≡

∂




1
1 2erfc ( )
2 2

m v
dv

vΩ

 + τ − µ τ  
∫ 


Gamma

2

2

C

S

∂
Γ ≡

∂




1 2( ) /2
2

1 1
( )

2

m v v
e dv

S v

− + τ τ

Ω
µ

π τ∫ 


Rho
C

r

∂
ρ ≡

∂




1
1 2erfc ( )
2 2

m
m v

S e dv
v

−

Ω

 − τ τ − µ τ  
∫ 


Theta
C∂

Θ ≡ −
∂τ




1 2( ) /2
2

1
( )

2 2

m v v rv
S e dv

− + τ τ

Ω

ρ
µ −

τπτ∫ 




Source: The authors.

Table 2
Set of parameters and stopping criterion to be used for calibrating to the market data

Variable description Value

S spot price 46.57

r constant risk-free rate 0%

τ maturity times (in years) 0.008 1.792

K strike prices 23 65

TolX termination tolerance on the current value
610−

TolFun termination tolerance on the function value
610−

Source: The authors.
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Table 3
Optimal values of θ and λ under the gamma randomisation (Note that we can only compare the RMSE with the 
inverse gamma randomisation for fixed τ , but we cannot compare the RMSE across different values of τ because the 
sample size differs across maturity times)

τ N τ θ λ RMSE Time

0.008 33 0.095 0.575 0.041 71.194

0.027 33 0.108 0.334 0.059 91.963

0.044 35 0.176 0.171 0.070 8.189

0.066 19 0.405 0.104 0.083 1.932

0.085 15 0.214 0.215 0.159 3.123

0.104 15 0.087 0.720 0.295 40.699

0.123 24 0.193 0.228 0.121 5.902

0.219 32 0.153 0.276 0.162 15.721

0.373 31 0.369 0.089 0.169 4.230

0.468 29 0.322 0.105 0.173 5.593

0.622 24 0.482 0.067 0.175 3.156

0.795 17 2.669 0.009 0.184 1.989

1.216 16 3.245 0.007 0.186 1.837

1.466 14 2.070 0.012 0.227 2.087

1.792 17 11.021 0.002 0.173 2.154

Source: The authors.

Option Pricing under Randomised GBM Models



17

Table 4
Optimal values of θ and λ under the inverse gamma randomisation (Note that we can only compare the RMSE with 
the gamma randomisation for fixed τ , but we cannot compare the RMSE across different values of τ because the 
sample size differs across maturity times)

τ N τ θ λ RMSE Time

0.008 33 0.719 0.002 0.032 6.087

0.027 33 0.827 0.002 0.051 3.460

0.044 35 0.877 0.003 0.062 3.569

0.066 19 1.227 0.014 0.079 2.332

0.085 15 0.885 0.005 0.147 2.107

0.104 15 0.672 0.002 0.280 2.533

0.123 24 0.923 0.006 0.106 2.788

0.219 32 0.799 0.003 0.135 3.897

0.373 31 0.979 0.006 0.147 2.903

0.468 29 0.926 0.005 0.141 3.787

0.622 24 1.091 0.009 0.153 3.789

0.795 17 2.406 0.035 0.181 2.338

1.216 16 2.962 0.048 0.183 2.697

1.466 14 1.861 0.024 0.217 2.310

1.792 17 8.016 0.155 0.173 3.485

Source: The authors.
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Table 5
Optimal values of α , σ and ρ under the SABR model (Note that we do not display the RMSEs here because the units 
associated from the SABR model is different from the randomised GBM models)

τ N τ α σ ρ Time

0.008 33 21.729 2.994 0.502− 0.435

0.027 33 10.616 3.643 0.560− 0.574

0.044 35 7.711 4.204 0.619− 0.353

0.066 19 4.691 6.793 0.465− 0.329

0.085 15 5.040 6.239 0.610− 0.341

0.104 15 5.967 5.473 0.704− 0.344

0.123 24 3.633 6.119 0.570− 0.337

0.219 32 2.916 5.424 0.604− 0.360

0.373 31 1.895 5.701 0.535− 0.159

0.468 29 1.631 5.680 0.385− 0.392

0.622 24 1.147 6.256 0.341− 0.378

0.795 17 1.001 6.032 0.425− 0.359

1.216 16 0.673 6.272 0.242− 0.371

1.466 14 0.782 5.940 0.154− 0.303

1.792 17 0.467 6.371 0.058− 0.331

Source: The authors.
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Figure 1. Plots of the transition PdFs for the process tS , ( , )G
tS θ λ , and ( , )IG

tS θ λ , where =100S , = 0.03r ,  
and = 0.1v

Source: The authors.

Figure 2. Plots of the transition PdFs for the process tS , ( , )G
tS θ λ , and ( , )IG

tS θ λ , where =100S , = 0.03r ,  
and = 0.1v

Source: The authors.
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Figure 3. BS implied volatility of a European vanilla call option under the gamma randomisation

Source: The authors.

Figure 4. BS implied volatility of a European vanilla call option under the inverse gamma randomisation
Source: The authors.
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Figure 5. 2d implied volatility plots for = 0.008 0.066τ  years

Source: The authors.

Figure 6. 2d implied volatility plots for = 0.085 0.219τ  years
Source: The authors.
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 Figure 7. 2d implied volatility plots for = 0.373 0.795τ  years

Source: The authors.

Figure 8. 2d implied volatility plots for =1.216 1.792τ 
years

Source: The authors.

 

Option Pricing under Randomised GBM Models



23

Appendix

A.1 Proof of the Exact Pricing Formula with Integer-valued Shape Parameter

Let us take { > }( ) =1T S Kt
SΛ with > 0K , where 1 is the indicator function of some event  . By (2) we 

have the following risk-neutral conditional probability that the asset price is above the strike K at 
the time T :



,

1 1
12 2( > ) = ( ) = erfc ( ),
2 2

t S T

m v m v
S K dv dv

v vΩ Ω

   − τ − τ   µ − µ   τ τ      
∫ ∫ 

 
 


where erfc is the complementary error function. We state another useful integral formula (see 

Prudnikov, Brychkov, & Marichev, 1986, Eq. 2.8.9.7): 1
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where sgn is the sign function with sgn(0) =1 . We can use (8) to obtain analytical formulas for the 
randomised processes in the case with integer-valued = nθ ∈ . For the randomised G process, we 
have:
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For the randomised IG process, upon changing the integration variable, we have:
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Now, we consider the risk-neutral conditional probability  

( )S
≡  under an equivalent martingale 

measure with the asset price process 0{ }t tS ≥ as the numéraire, where
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1 The integral formula is valid for ( ) > 0,| arg( ) |<
4

p c πℜ . Moreover, it would be valid for 2( ) > 0c pℜ + if ( ) > 0cℜ .
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where = rt
tB e is the bank account value at the time t . For the randomised G process 

( , )
0{ } ,G n

t tS nλ
≥ ∈ , by using (11) and (8), we have:

        



1/4 1
( , ) /2

, { >0}
=0

1/2 1/2

| | 8 1 2 | |
( > ) =1

!2 8

| | 8 | | 8
sgn( )K K .

2 28

kn
G n m

t S T m
k

k k

m m
S K e

k

m m
m

−
λ −

− +

 + λτ −     λτ  π λτ + λτ

    + λτ λτ + λτ× −    λτ + λτ λτ     

∑

 

(12)

By substituting (9) and (12) into (5), we obtain (6). For the randomised IG process ( , )
0{ }IG n

t tS λ
≥ , 

n ∈ , by using (11) and (8) we have:
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By substituting (10) and (13) into (5), we obtain (7).

A.2 The Exact Pricing Formulas for ATMF Options

The price of an ATMF (i. e., ln( / ) = 0m S K r≡ + τ ) European vanilla call option under the GBM model, 
with variance randomised according to the probability measure µ , can be expressed as:

 ( ,0) = erf ( ).
2 2

v
C dv

Ω

 ττ µ  ∫ 


Where erf is the error function. We use the above equation to derive the pricing formulas for ATMF 
options explicitly under the gamma and inverse gamma randomisation for shape parameter +θ ∈ .

Proposition 1 The price (divided by spot S ) of an ATMF European vanilla call option under the 
gamma randomisation is:



( , ) 2 1

1
( ) 8 1 82( ,0) =1 F ( , ; 1, ),

2( 1)
GC

θ

θ λ

Γ θ +  τ − θ θ + θ + −  λτ λτπΓ θ +

where F ( ; ; )p q za b is the generalised hypergeometric function.

Proof
We first make a note that the incomplete gamma function can be expressed in terms of the Kummer 
function of the first kind. i. e.,

1
1 1( , ) = F ( ; 1; ).x x x− θγ θ θ θ θ + −
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Hence, we have


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From the integral representation above, we obtain the final expression.
Proposition 2 The price (divided by spot S ) of an ATMF European vanilla call option under the in-

verse gamma randomisation is:


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Now use the fact that modified Bessel functions of the second kind can be expressed in terms of 
generalised hypergeometric functions. i. e.,
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From the integral representation above, we obtain the final expression.

2 The integral formula is valid for 0( ) < 1, ( ) > 0z aℜ ℜ .
3 The integral formula is valid for 0 0( ) > ( ) > 0b aℜ ℜ .
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АННОТАЦИЯ
Как правило, существуют сложности для точного определения уровня ожидаемых потерь в целях управле-
ния риском и для оценивания опционов. В данной работе использована методология ожидаемых потерь 
для оценки опционов обмена акций с помощью некоторых приближений. Эффективность результатов 
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1 Introduction
In complete markets, every contingent claim is 
replicable in the class of self-financing strate-
gies, and its price is unique. However, there is a 
whole range of arbitrage-free prices in incom-
plete markets or in markets with constraints. 
The minimum price that guarantees no under-
hedging at maturity is equal to the supremum of 
this price range. The resulting strategy is known 
as superhedging (see, for instance, El Karoui and 
Quenez (1995)). An investor can choose to stay 
within the boundaries of perfect hedging and 
completely eliminate potential risks by engaging 
in superhedging strategies. But the cost of such 
a strategy can be too high to be implemented 
successfully. A viable alternative is to accept the 
possibility of a shortfall —  the difference be-
tween the payoff of the contingent claim and the 
replicating portfolio at maturity. This approach 
is usually exploited when there are market con-
straints on the amount of capital that can be 
used for hedging. It has practical benefits as reg-
ulators frequently require financial institutions 
to use a certain amount of funds conservatively 
to be able to meet their obligations. Still, the ex-
tra funds saved on hedging can be used more ag-
gressively in an attempt to earn an extra return. 
Two main approaches have been considered in 
the literature. The first one includes maximis-
ing the probability of a successful hedge. One 
of the earliest works is by Kulldorf (1993). The 
author considered a stochastic control problem 
with a single risky asset whereby an agent aims 
to reach a particular value of fortune on a finite 
time interval before first going broke. Browne 
(1999) expanded upon the results obtained by 
Kulldorf (1993). The author considered a market 
setting with several risky securities and deter-
mined the optimal policy that maximises the 
probability of reaching a certain level of wealth 
before some fixed terminal time. Working in this 
direction, Foellmer and Leukert (1999) trans-
formed the initial problem into the problem 
when an optimal strategy maximises the prob-
ability of successful hedging. The resulting strat-
egy can be viewed as a dynamic version of the 
Value-at-Risk (VaR) concept, a popular measure 
of market risk exposure. The major drawback 
of the approach is that the size of the potential 
shortfall is not taken into account. Developing 
the approach, Foellmer and Leukert (2000) pro-

pose to minimise the amount of expected short-
fall where some loss function 𝑙 measures an in-
vestor’s attitude to the size of the shortfall. The 
key idea is to use the Neyman-Pearson lemma 
to modify the original contingent claim so that 
the modified contingent claim can be perfectly 
hedged. The authors show that the modified 
claim’s perfect hedging strategy is also the op-
timal strategy for the initial minimisation prob-
lem.

The methodology proposed by Foellmer and 
Leukert (2000) leaves some space for a choice 
of the loss function to model the attitude of the 
investor towards the potential shortfall. Value-at-
risk (VaR), being the most popular tool for meas-
uring market risk exposure by practitioners, is 
a natural choice. However, the use of VaR was 
severely criticised for failing to predict the scope 
of the losses during the global financial crisis. The 
most recent Basel III framework has signified the 
major shift from VaR to conditional Value-at-Risk 
(CVaR) as the encouraging measure of risk un-
der stress. According to the Basel Committee on 
Banking Supervision (2016), the use of CVaR “will 
help to ensure a more prudent capture of ‘tail risk’ 
and capital adequacy during periods of significant 
financial market stress.” CVaR has some beneficial 
mathematical properties that VaR lacks. First of all, 
CVaR satisfies the four properties of translation 
invariance, subadditivity, positive homogeneity, 
and monotonicity, making it a coherent measure 
of risk (Artzner et al., 1999)). In general, VaR does 
not satisfy the subadditivity property unless the 
joint distribution function of portfolio losses is 
from a family of elliptical distributions. Another 
advantage of CVaR over VaR is that it is a spectral 
measure of risk (Acerbi, 2002)), meaning that it 
directly relates to the notion of risk-aversion, an 
essential concept in studying optimal consump-
tion problems through the use of utility functions. 
One major drawback of CVaR is that it, in its origi-
nal form, is a hard risk measure to optimise with 
respect to. According to Brutti Righi and Ceretta 
(2016), “despite the advantages of ES, this meas-
ure is less frequently utilised than VaR because 
forecasting ES is challenging due to its complex 
definition”, where ES stands for the same concept 
as CVaR. However, Rockafellar and Uryasev (2000) 
showed that an intrinsic relation between the two 
risk measures exists and developed a methodol-
ogy for optimising an investment portfolio with 
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respect to both VaR and CVaR simultaneously. The central idea is to introduce an auxiliary function 
F  through which VaR and CVaR can be expressed. The properties of convexity and continuous dif-
ferentiability make the function F  “well-behaved” for optimisation tasks. Melnikov and Smirnov 
(2012) applied the ideas of Foellmer and Leukert (2000) to the case where CVaR represents the loss 
function l  that models the attitude of an agent to risk and considered the following dual problem: 
minimisation of CVaR when the initial capital is bounded from above, and minimisation of hedging 
costs subject to a constraint of the amount of CVaR. The authors further used the representation of 
CVaR as in Rockafellar and Uryasev (2000). The explicit results were obtained within the framework 
of the Black-Scholes market with a single risky asset.

This paper aims to take a step in the direction of generalising the results obtained by Melnikov 
and Smirnov (2012) and consider the problem of CVaR-based option pricing within the context of the 
Margrabe market model with two risky assets. The option type of interest is a plain vanilla spread 
option. Spread options are broadly used and appear in a wide range of financial markets: as crack 
spread option in energy markets, as credit spread options in fixed income markets, and as options to 
exchange one asset for another in equity markets (see Margrabe, 1978; Fischer, 1978). The problem 
is further complicated in several aspects. For example, a non-trivial aspect of pricing such options 
requires knowing the probability distribution of the difference between log-normal random vari-
ables that do not admit a satisfactory theoretical expression. Hence, some approximation methods 
are necessary. In particular, the paper utilises the approximate spread option pricing methodology 
proposed by Bjerksund and Stensland (2006) and an approximation based on the assumption that 
the difference between two log-normal random variables is normally distributed. Furthermore, CVaR 
is chosen as the measure of risk to make the paper’s results easily applicable by practitioners in the 
industry.

2 Preliminaries and Existing Approximating Methods
Let ( )( )0( , , ) ,tF t P≥Ω =   be a standard stochastic basis with filtration ( )t  that satisfies the usual 
conditions, and ( ) { }0 ,= Ω ∅ . Assume that T  is the terminal time for all the contingent claims 
traded on this market. Then the dynamics of the two stock price processes ( ) [ ]( )1 1 : 0,S S t t T= ∈  and 

( ) [ ]( )2 2 : 0,S S t t T= ∈  are assumed to satisfy the following stochastic differential equations (SDEs):

        
( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

,

,

dS t S t dt dW t

dS t S t dt dW t

 = µ + σ 
 = µ + σ 

  (1)

where ( ) [ ]( )1 1 : 0,W W t t T= ∈  and ( ) [ ]( )2 2 : 0,W W t t T= ∈  are standard Brownian motion processes 
with correlation coefficient ρ .

The original Margrabe market model only assumed the existence of two risky assets and no bank 
account. Therefore, we take all the stocks traded in this market as already discounted.

We further assume that the market is arbitrage-free and complete and introduce a unique equiv-
alent martingale measure Q  via the Radon-Nikodym derivative:

( ) .
dQ

Z T
dP

=

We say that measure Q  is equivalent to measure P  if the two measures agree on the sets of 
measure 0, i. e., if

( ) ( )0 0.P w Q w> ⇔ >

The process ( ) [ ]( ): 0,Z Z t t T= ∈  takes the following functional form (see, for instance, Melnikov 
(2011)):

       ( ) ( ) ( )
2

1 1 2 2exp ,
2

Z t W t W t t
φ σ

= φ + φ − 
  

  (2)
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where

( )

( )

1 2 2 1
1 2

1 2

2 1 1 2
2 2

1 2

2 2 2
1 2 1 2

,
1

,
1

2 .φ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ = φ + φ + ρφ φ

Under the risk-neutral probability measure Q , the dynamics of the two assets satisfy

     ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

2 2 2 2

,

,

Q

Q

dS t S t dW t

dS t S t dW t

= σ
= σ

  (3)

where ( ) [ ]( )1 1 : 0,Q QW W t t T= ∈  and ( ) [ ]( )2 2 : 0,Q QW W t t T= ∈  are, according to the Girsanov theorem 
(Shreve (2011)), standard Brownian motion processes with correlation coefficient ρ . We can rewrite 
the process Z  under the measure Q  as follows:

      ( ) ( ) ( )
2

1 1 2 2 1 1 2 2exp ,
2

Q QZ t W t W t t
φ

  σ
 = φ + φ − + φ θ + φ θ 
   

  (4)

where
1

1
1

2
2

2

,

.

µ
θ =

σ
µ

θ =
σ

The general payoff function of a spread option is of the following form:

      ( ) ( )1 2[ ] ,S T S T K +− −   (5)

where K  is a deterministic strike price. The exact pricing formula for the special case when 0K =  
was determined independently by Margrabe (1978) and Fischer (1978). The price of such a contin-
gent claim is given by

            ( ) ( ) ( ) ( )1 1 2 20 0 ,p S d S d= Φ − Φ   (5)

where ( )
( )

2
1

2
1

2 1

2 2
1 2 1 2

0
ln

0 2
,

,

2 ,

S T

S
d

T

d d T

  σ+  
=

σ
= − σ

σ = σ + σ − σ σ ρ

and ( )xΦ  is the standard normal cumulative distribution function (CDF). To avoid ambiguity, we will refer 
to the special case of equation (5) as an option to exchange one asset for another one; and as a spread 
option otherwise.

However, it is generally accepted that the probability density function (PDF) of linear combinations of 
log-normal random variables does not have a closed form. Approximations of the distribution of sums of 
log-normal random variables exist in the literature; see, for example, Mehta et al. (2007), Cobb and Rumi 
(2012), Hcine and Bouallegue (2015). Less is known about the distribution of the difference between cor-
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related log-normal random variables. Lo (2012) proposed the Lie-Trotter operator splitting method and 
found that a shifted log-normal process governs the difference between two log-normal random variables. 
A more recent work by Gulisashvili and Tankov (2016) considers the tail behaviour of the distributions of 
linear combinations of log-normal random variables explicitly. The results of the paper allow approximat-
ing the probabilities of tail events directly. The authors further provide insights into how these findings 
can be applied in the domain of risk management.

Thus, only approximate pricing formulas for equation (5) exist. Carmona and Durrleman (2003) provide 
a thorough overview of spread option pricing methodologies. However, while most of the approximations 
to equation (5) that exist in the literature provide accurate estimates, these are not always easily transfer-
able to the domain of risk management due to their complexity. For the purposes of this paper, we will 
work around the idea of approximating the difference between two log-normal random variables using a 
normal distribution. According to Carmona and Durrleman (2003), “computing histograms of historical 
spread values shows that the marginal distribution of a spread at a given time extends on both tails, and 
surprisingly enough, that the normal distribution can give a reasonable fit.” It allows us to price an option 
with a payoff as in equation (5) in the approximate form, similar to equation (6). Consider the difference 
between the two stock prices at maturity:

  ( ) ( ) ( ) ( ) ( ) ( )
2 2
1 2

1 2 1 1 1 2 2 20 exp 0 exp .
2 2

Q QT T
S T S T S W T S W T

   σ σ
− = − + σ − − + σ   

   
  (7)

The above expression represents the difference between two log-normal random variables distri-
bution of which is not log-normal and generally has not been determined. By applying Taylor series 
expansion to the exponents,

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1 2 1 2 1 1 2 2 1 2

2 2

0 0 0 0 0 0 ,
! !

n n

n n

z z
S T S T S S S z S z S S

n n

∞ ∞

= =

− = − + − + −∑ ∑   (8)

where

( )

( )

2 2
21 1

1 1 1 1

2 2
22 2

2 2 2 2

, ,
2 2

, .
2 2

Q

Q

T T
z W T N T

T T
z W T N T

 σ σ
= − + σ ∼ − σ  

 σ σ
= − + σ ∼ − σ  

Equation (8) represents a normal random variable plus an error term in the amount of  
 

( ) ( )1 2
1 2

2 2

0 0
! !

n n

n n

z z
S S

n n

∞ ∞

= =

−∑ ∑ . The price of the option with a payoff as in equation (5) can then be ap-

proximated as follows:
      ( ) ( ) ( ) ( ) ( )1 1 2 2 30 0 ,p S d S d K d= Φ − Φ − Φ   (9)

where

( ) ( )

( ) ( )

1 1 1

2 2 2

3

1 1 2 2
1

1 1 2 2
2

,

,

,

0 0
,

0 0
,

K m
d T

K m
d T

K m
d

S S T

S S T

− −= + σ ρ
σ

− −= + σ ρ
σ

− −=
σ

 σ − σ ρ ρ =
σ

 σ ρ− σ ρ =
σ
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and where ( ) ( ) ( )2
1 2 ~ ,S T S T N m− ≈ γ σ , i. e., where the difference ( ) ( )1 2S T S T−  in the indicator 

function of the option, exercise event is replaced by a normal random variable γ  with mean m  and 
variance 2σ . We can use the moment matching technique to calculate the moments of γ . Consider 
the mean m ,

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2

2 2
1 2

1 1 1 2 2 2

1 2

0 exp 0 exp
2 2

0 0 .

Q

Q Q
Q Q

m E S T S T

T T
E S W T E S W T

S S

 = − = 
      σ σ

= − + σ − − + σ               
= −

The corresponding variance is

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2 2
1 2 1 1 2 2

2 2 2 2 2 2
21 2 1 2 1 2

1 2 1 2

0 exp 0 exp

2
2 0 0 exp [ 0 0 ] .

2 2

Var S T S T S T S T

T T T
S S T S S

 σ = − = σ + σ − 
  σ + σ σ + σ + σ σ ρ
− + − −     

Let us call the approximation in equation (9) as a normal approximation.
The second spread option pricing formula that we are considering in the paper was proposed by 

Bjerksund and Stensland (2006), where the authors consider the following expectation:

               ( ) ( )( )
( ) ( )

( )
2

2
1 2

2

1 2
( )

( )

,

Q

Q
c S T

S T
E S T

E S T S T K I   ≥     

 
 

− − 
 
  

  (10)

where
( )

( )
( )

2

2

2

0 ,

0
.

0

c S K

S
b

S K

= +

=
+

The strategy to exercise the option depends on the price of the long asset at maturity exceeding 
the power function of the short asset times a constant term. The price of the spread option is then 
given by

      ( ) ( ) ( ) ( ) ( )1 1 2 2 30 0 ,p S d S d K d= Φ − Φ − Φ   (11)

where

( )

( )

( )

2 2 2
1 1 2

1 2

1

2 2 2
1 21 2

1 2 2

2

2 2 2
1 1 2

3

2 2 2
1 1 2 2

0
ln

2 2
,

0
ln

2 2
,

0
ln

2 2
,

2 .

S b
b T

c
d

T

S b
b T

c
d

T

S b
T

c
d

T

b b

   σ σ
+ − σ σ ρ+     

=
σ

   σ σ
+ + σ σ ρ+ − σ     

=
σ

   σ σ
+ − +     

=
σ

σ = σ − σ σ ρ+ σ
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The authors showed, via numerical simulations, that equation (11) provides a very accurate lower 
bound to the true price of the contingent claim. It offers better estimates than the widely used Kirk’s 
approximation (1995). Let us call the approximation as the BS-approximation. The derivation of 
equation (11) is in Appendix C.

To compare the two pricing formulas, we have estimated the prices by first varying the volatility of 
the first stock 1σ  and the time to maturity T  parameters. The other parameters used are as follows: 

( ) ( )1 2 20 105, 0 100, 5, 0.2, 0.5S S K= = = σ = ρ = . The results we present in Table 2 (refer to Appendix B). 
Tables 3 and 4 show the absolute and percentage errors’ values compared to Monte Carlo simulations. 
We can infer from the tables that the percentage errors vary significantly depending on the choice of 
market parameters for the proposed normal approximation, whereas the BS-approximation provides 
more accurate estimates. Lower rates of error are associated with a shorter time to maturity and the 
volatility parameters of the two stocks being closer to each other. Both pricing methodologies provide 
the lower bound on the option price compared to Monte Carlo simulations.

CVaR-hedging Methodology Adapted to Model (1)
Consider an ( )T -measurable European style contingent claim ( )1H L Q∈ , i. e. ( )QE H < ∞ , with 

the following payoff structure:

         ( ) ( )1 2[ ] .H S T S T += −   (12)

Suppose that a financial institution has sold this option in the market and received ( ) ( )0 QH E H= , 
the amount required for perfect hedging, given by equation (6). However, the institution decides not 
to use all the proceeds from the sale of the option and thus is faced with the possibility of a shortfall 
at maturity. The question arises: What is the best trading strategy the institution should follow to 
minimise its expected shortfall if it uses CVaR as a measure of risk?

Denote by   the class of admissible self-financing trading strategies ( )( )0 , ,Vπ = ξ η , where ( )0 0V >  
is the amount of initial capital, ξ  and η  denote the number of units of the first and second stocks 
held in portfolio, respectively, such that

        ( ) ( ) ( ) ( ) ( ) ( ) [ ]1 2

0 0

0 , 0, , . .
t t

V t V s dS s s dS s t T P a s= + ξ + η ∀ ∈ −∫ ∫   (13)

Strategy π  is admissible if ( ) [ ]0, 0, , . .V t t T P a s≥ ∀ ∈ −
Denote by  ( )0V  the amount available for hedging such that  ( ) ( )0 0V H< . Then the amount of 

shortfall ( )L π  associated with a given portfolio π  takes the following form:

   ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0 0

0 .
T T

L H V T H V s dS s s dS sπ = − = − − ξ − η∫ ∫   (14)

Fix a confidence level  , usually 90%, 95% or 99% for practical purposes. We will be minimising 
CVaR  over all strategies π ∈  with the restriction on the amount of capital available, ( ) ( )�0 0V V≤ , i. e.

         
( )

( )  ( )
min,

, 0 0 .

CVaR

V V

π
 π →


π ∈ ≤




  (15)

Denote by  ( )( )0V  the set of all admissible self-financing strategies that use no more initial 
capital than  ( )0V . Let us introduce an auxiliary function F  as follows:

          ( ) ( )(1
, [ ) .

1
F z z E L z + π = + π − − 

  (16)
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According to Rockafellar and Urysev (2000), ( )CVaR π  and ( ),F zπ  are interconnected through 
the following nice property: function ( ),F zπ  is finite and convex with respect to z ∈ , and

     ( ) ( )min , .
z

CVaR F z
∈

π = π
    (17)

Moreover, minimising ( )CVaR π  over all strategies  ( )( )0Vπ ∈  is equivalent to minimizing 
( ),F zπ  over all ( )  ( )( ), 0z Vπ ∈ ×  :

( )( )
( )

( ) ( )( )
( )

� �0 , 0
min min , .

V z V
CVaR F z

π∈ π ∈ ×
π = π


 

 

We arrive at the following equality:

     
 ( )( )

( )
( )( )

( )
0�0

1
min min min ( ) .

1z VV
CVaR z E H V T z +

∈ π∈π∈

   π = + − −  −   


 
  (18)

The expression in equation (18) represents a new optimisation objective. Let us define an auxil-
iary function ( )c z  in the following way:

    ( )
 ( )( )

( )(
0

1
min ) ,

1V
c z z E H V T z +

π∈

 = + − − −  
  (19)

and rewrite equation (18) in terms of the new function ( )c z  as follows:

     
 ( )( )

( ) ( )
0

min min .
zV

CVaR c z
∈π∈

π =
 

  (20)

Let the minimum value of the function ( )c z  for each z  be achieved using strategy

( ) ( ) ( ) ( )( )0, , , .z V z z zπ = ξ η





We then have:

 ( )( )
( ) ( )

0
min ( ) ( , ) ,

V
E H V T z E H V T z z+ +

π∈
− − = − −



where
( ) ( ) ( ) ( ) ( ) ( )1 2

0 0

, 0, , ,
T T

V T z V z s z dS s s z dS s= + ξ + η∫ ∫
 



Suppose that the global minimum of the function ( )c z  is achieved at the point z , i. e.,
( ) ( )min .

z
c z c z

∈
= 



Then the optimal solution to the problem of CVaR  minimization over all  ( )( )0Vπ ∈ , set in 
equation (15), is the strategy

( ) ( ) ( ) ( ){ }0, , , .z V z z zπ = ξ η



    

Now, according to equation (17), we have:

        ( ) ( ).CVaR c zπ =    (21)

It follows that if we can find the strategy π  in an explicit form, then the problem of CVaR  
minimisation will be reduced to the problem of minimisation of the function ( )c z . Observe that for 
each z , the strategy π  is a solution to the following problem
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          ( )
 ( )( )0

( ) min
V

E H V T z +

π∈
− − →


  (22)

Let us note that

( ) ( )( ) [( ) ] .H V T z H z V T+ + +− − = − −

Denote ( )H z +−  by ( )H z . It is evident that ( )H z  is an  -measurable random variable, ( ) ( )1H z L Q∈  
and ( ) 0H z ≥ . We can consider ( )H z  as a contingent claim. Equation (22) can be reformulated in 
the following form:

           ( ) ( )
 ( )( )0

( ) min
V

E H z V T +

π∈
− →


  (23)

This optimisation problem can be interpreted as the problem of expected shortfall minimisation 
over the strategy set  ( )( )0V  of contingent claim ( )H z , which was solved by Melnikov and Smirnov 
(2012). The optimal solution ( )( )0 , ,Vπ = ξ η


  of the problem of expected shortfall minimisation is the 

perfect hedge of the modified contingent claim ( ) ( )( )H z z H z += ϕ −

  or, equivalently, ( ) ( ) ( ) :H z z H z= ϕ



     ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]1 2

0 0

| t 0, , , ,� 0, , . .,
T T

QE H z V z s z dS s s z dS s t T P a s= + ξ + η ∀ ∈ −∫ ∫
 

   (24)

where
( )

( )
( )

( )

( )  ( )

( )

 ( )
( )

( )

,

inf 0 : ( ) 0 ,

0 ( )

.

( )

dP dP
a z a z

dQ dQ

Q dP
a

dQ

Q dP
a z

dQ

Q dP
a z

dQ

z I z I

a z a E H z I V

V E H z I

z

E H z I

   > =   
  

+
 > 
 

+
 > 
 

+
 = 
 

ϕ = + β

    = ≥ − ≤ 
    

 
 − −
  β =

 
 −
  

 









Moreover, in the context of equation (21), the function ( )c z  admits the following description:

          ( ) ( )( )( ) 



1
1 ,

1

, �

z E z H z z z
c z

z z z

+  + − ϕ − <  −= 
 ≥



   (25)

Equivalently,

( ) ( ) ( ) 



1
,

1

, �

z E H z H z z z
c z

z z z

  + − <  −= 
 ≥





where z  is the solution to the following equation:

       ( ) (0 [ ) .QV E H z + = −    (26)

3 Main Results: Extended Approximate Formulas
To find the price of the optimal hedge, in CVaR sense, or, equivalently, to construct a replicating port-
folio with the lowest level of CVaR , we must first find z  in equation (26). To do it, we will be using the 
proposed normal approximation, and the BS-approximation described above. Once we have determined 
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the unique value z , we can minimise equation (25) numerically, using the Monte Carlo simulation 
technique. Suppose that z  is the global minimum of the function ( )c z . Noting that the distribution of 
Brownian motion is atomless, the problem is reduced to evaluating the following expectation:
   

    ( )( ) ( ) ( )( )
( )1 2 .Q Q dP

a z
dQ

E H z E S T S T z I
+

 > 
 

 
 = − −
  

 



    (27)

Depending on the chosen approximating method, the following two theorems provide the neces-
sary tools for constructing a hedge with the lowest level of CVaR :

Theorem 1. Approximating the distribution of the difference between two log-normally distributed 
stock prices as a normal distribution, the price p  of setting up a replicating portfolio for a spread option 
at any time t T≤  can be estimated as follows:

                                  ( )  ( ) ( )  ( )  ( )2 2 2
1 2 31 2 31 3 2 3 30 , , 0 , , , , ,p S x y S x y z x y= Φ ρ − Φ ρ − Φ ρ

  (28)

where












( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( )

1 1 1

1 1 4

2 2 2

2 2 5

3

3

1 1 1 2 2

2 1 1 2 2

3

2 1
4

2 1
5

2 2
1 2 1 2

2
2 1 2

1
1 1 2

2

,

,

,

,

,

,

0 0 ,

0 0 ,

,

,

,

2 ,

0 ,

0 ,

2

m z
x T

y K T

m z
x T

y K T

m z
x

y K

T
S S

T
S S

a b

T
a S

T
b S

K

φ

φ

φ

φ

φ

φ

−= + σ ρ
σ

= + σ ρ
−= + σ ρ
σ

= + σ ρ
−=
σ

=

ρ = σ − σ ρ
σ

ρ = σ ρ− σ
σ

−ρ =
σ

ρφ + φ
ρ = −

σ

φ + φ ρ
ρ = −

σ

σ = φ + φ + ρφ φ

σ
= φ ρ+ φ

σ

σ
= φ + φ ρ

σ

σ
+ φ

=















( )

( ) ( ) ( )

1 1 2 2

2
1 2

1
ln

,

, ,

T
a z

T

S T S T N m

φ

   
θ + φ θ +     

σ

− ≈ γ ∼ σ

 
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and ( )2
1 2x ,x ,Φ ρ  is the CDF of the bivariate standard normal distribution with correlation .ρ

Proof . We want to find the price of the option with the following payoff

( ) ( )
( )1 2( ) .dP

a z
dQ

S T S T K I+
 > 
 

− −
 

Let us first consider the expression in the indicator function:

                  

( ) ( ) ( ) ( )

( ) ( ) ( )

{ }

2

1 1 2 2 1 1 2 2

2

1 1 2 2

1 1 2 2

1
exp

2

1
ln

2

,

Q Q

Q Q

dP
a z W T W T T

dQ a z

T
a zW T W T

T T

K

φ

φ

φ φ

   σ    > = > φ + φ − + φ θ + φ θ    
       

  σ  
 + φ θ + φ θ +     φ + φ  

= < 
σ σ 

 
 

= ∈<

 

 

 



  (29)

where

( ) ( )

( ) ( ) ( )

( )

( )

( )

1 1 2 2

2

1 1 2 2

1 2 2 1
1 2

1 2

2 1 1 2
2 2

1 2

2 2
1 2 1 2

1
1

1

2
2

2

0,1 ,

,

1
ln

2
,

,
1

,
1

2 ,

,

.

Q

Q Q
Q

W T
N

T

W T W T
W T

T
a z

K
T

φ

φ

φ

φ

∈= ∼

φ + φ
=

σ

 σ  
+ φ θ + φ θ +     

=
σ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ = φ + φ + φ φ ρ

µ
θ =

σ
µ

θ =
σ





 



Replacing ( ) ( )1 2S T S T−  by ( )2,N mγ ∼ σ , we obtain:
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( ) ( )( )
( )

( ) ( )( ) ( ) ( ){ } ( )

( ) { } { } ( ) { } { } { } { }

( ) ( )( ) { } { }

( )

1 2

1 2

1 2

1 2

2
1

1 1 1

2
2

0 exp exp
2

0 exp

Q dP
a z

dQ

Q dPS T S T K
a z

dQ

Q Q QK K KK K K

Q
Q K K

E S T S T K I

E S T S T K I I

E S T I I E S T I I KE I I

T
S E W T I I

S

+

 > 
 

 − > > 
 

γ > γ > γ >∈< ∈< ∈<

−γ <− ∈<

 
 − −
  

 
 = − −
  

     = − −          
 σ  = − σ     

σ
− −

 

 

  



( )( ) { } { } { } { }
2

2 2exp .
2

Q
Q QK KK K

T
E W T I I KE I I−γ <− −γ <−∈< ∈<

    σ −        

  (30)

Consider the first term in equation (30):

                                 

( ) ( )( ) { } { }

( ) ( ) { } { }

2
1

1 1 1

2
1

1 1

0 exp exp
2

0 exp exp ,
2

Q
Q K K

Q X K Y K

T
S E W T I I

T
S E Z I I

−γ <− <

<− <

 σ  − σ =     

 σ  − −     





ò

  (31)

where

( ) ( )
( )

( ) ( ) ( )

2
1 1 1 1

2

1 1 2 2

0, ,

, ,

0,1 .

Q

Q Q

Z W T N T

X N m

W T W T
Y N

Tφ

= −σ ∼ σ

= −γ ∼ − σ

φ + φ
= ∼

σ

To apply the two-asset lemma (see Appendix A) to the expectation term, we need to estimate the 
correlation coefficients 

1 1
,Z X Z Yρ ρ  and XYρ . Consider XYρ ,

2

.xy
XY

x y

σ
ρ =

σ σ

Since ( )0,1Y N∼ ,

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

2

1 1 2 2 1 1 2 2
2 1

2
2

2 1 1 2 2 2 2 2 2

2
1

1 1 1 1 1 2 2 1 1

1
0 exp exp exp

2

1
0 exp exp exp

2

xy Q

Q Q Q Q

Q Q

Q Q Q Q
Q

Q Q Q Q
Q

E XY

W T W T W T W T
E S T E S T

T T

T
S E W T W T W T W T

T

T
S E W T W T W T W T

T

φ φ

φ

φ

σ =

   φ + φ φ + φ
   = −

σ σ      
 σ  = − φ σ + φ σ   σ 

 σ  − − φ σ + φ σ   σ 
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Opening the brackets and calculating the expectations, the above yields:

( ) ( ) ( ) ( )2 1
2 1 2 1 1 20 0 .

T T
S S

φ φ

σ σ
φ ρ+ φ − φ + φ ρ

σ σ

To get the correlation, we need to divide it by x yσ σ  to get:

,XY

a b−ρ =
σ

where

( ) ( )

( ) ( )

2
2 1 2

1
1 1 2

0 ,

0 .

T
a S

T
b S

φ

φ

σ
= φ ρ+ φ

σ

σ
= φ + φ ρ

σ

Now consider 
1Z Xρ ,

1

1

1

2

.
z x

Z X
z y

σ
ρ =

σ σ

Since ( )2
1 10,Z N T∼ σ ,

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1

2
1

2 2
1 2

1 1 1 1 1 2 2 2

2
1

1 1 1 1 1

2
2

2 1 1 2 2

0 exp 0 exp
2 2

0 exp exp
2

0 exp exp .
2

z x Q

Q Q Q
Q

Q Q
Q

Q Q
Q

E Z X

T T
E W T S W T S W T

T
S E W T W T

T
S E W T W T

σ =

     σ σ = σ − + σ − − + σ            
 σ  = − σ σ    

 σ  − − σ σ    

Opening the brackets and calculating the expectations,

( ) ( )
1

2 2
1 1 2 1 20 0 .z x S T S Tσ = σ − σ σ ρ

Similarly, by dividing by x yσ σ  we get the correlation:

( ) ( )( )
1 1 1 2 20 0 .Z X

T
S Sρ = σ − σ ρ

σ

Let us now consider 
1Z Yρ ,

1

1

1

2

.
z y

Z Y
z y

σ
ρ =

σ σ

Since both random variables 1Z  and Y  have zero expectation,
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( )

( ) ( ) ( )
1

2
1

1 1 2 2
1 1 .

z y Q

Q Q
Q

Q

E Z Y

W T W T
E W T

Tφ

σ =

  φ + φ = −σ  
 σ  

Simplifying, we get:

1

1 2 .Z Y
φ

φ + ρφ
ρ = −

σ

We can now apply the two-asset lemma to equation (31) to get

   
( ) ( ) { } { }

( )  ( )

2
1

1 1

2
1 11

0 exp exp
2

0 , , ,

Q X K Y K

XY

T
S E Z I I

S x y

<− <

 σ  − −     

= Φ ρ



  (32)

where



1
1 1 ,Z X

m K
x T

−= + σ ρ
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11 1 ,Z Yy K T= + σ ρ ( ) ( )( )
1 1 1 2 20 0 ,Z X

T
S Sρ = σ − σ ρ

σ 1

1 2 ,Z Y
ρ

φ + φ ρ
ρ = −

σ  

 
,XY

a b−ρ =
σ

( ) ( )2
2 1 20 ,

T
a S

φ

σ
= φ ρ+ φ

σ
( ) ( )1

1 1 20 ,
T

b S
φ

σ
= φ + φ ρ

σ
( )

2

1 1 2 2

1
ln

2
T

a z
K

T

φ

φ

 σ  
+ φ θ + φ θ +     

=
σ

 



Now consider the second term in equation (30):

   ( ) ( )( ) { } { }
2
2

2 2 20 exp exp ,
2

Q
Q K K

T
S E W T I I−γ <− ∈<

 σ  − σ      

  (33)

where

( ) ( )2
2 2 2 10,� ,QZ W T N T= −σ ∼ σ ( )2, ,X N m= −γ ∼ − σ

( ) ( ) ( )1 1 2 2 0,1 .
_

Q QW T W T
Y N

T

φ + φ
= ∼

σ φ

We need to estimate the correlation coefficients 
2Z Xρ  and 

2Z Yρ . Proceeding in the same manner 
as for equation (31), we evaluate the correlation coefficients to be as follows:

( ) ( )( )
2

2

1 1 2 2

1 2

0 0 ,

.

Z X

Z Y

T
S S

φ

ρ = σ ρ− σ
σ

φ ρ+ φ
ρ = −

σ

Applying the two-asset lemma,

   
( ) ( ) { } { }

( )  ( )

2
2

2 2

2
2 22

0 exp exp
2

0 , , ,

Q X K Y K

XY

T
S E Z I I

S x y

<− <

 σ  − −     

= Φ ρ



  (34)
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where



2
2 2 ,Z X

m K
x T

−= + σ ρ
σ



2 2 2 ,Yy K T Z= + σ ρ ( ) ( )( )
2 1 1 2 20 0 ,Z X

T
S Sρ = σ ρ− σ

σ 2

1 2 .Z Y
φ

φ ρ+ φ
ρ = −

σ

The last term in equation (30) is simply

          { } { }
 ( )2

3 3, , ,Q XYK K
KE I I K x y−γ <− ∈<

  = Φ ρ  

  (35)

where



3 ,
m K

x
−=
σ



3 .y K= 

Combining all three terms, equations (32), (34) and (35), we get the stated formula in equation (28).
Alternatively, using the BS-approximation:
Theorem 2. Using the BS-approximation for the price of the spread option, the price p  of setting up 

the replicating portfolio at any time t T≤  can be estimated as follows:

   ( )  ( ) ( )  ( )  ( )2 2 2
1 2 31 2 31 3 2 3 30 , , 0 , , , , ,p S x y S x y z x y= Φ ρ − Φ ρ − Φ ρ

  (36)

where

 

1 1 1 ,x K T= + σ ρ 

1 1 4 ,y K T= + σ ρ
 

2 2 2 ,x K T= + σ ρ 

2 2 5 ,y K T= + σ ρ
 

3 ,x K= 

3 ,y K=   
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1 2 2 2

1 1 2 2
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b T

T b T b T

σ − σ ρ
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σ − σ σ ρ + σ

( )1 2
2 2 2 2

1 1 2 2

,
2

b T

T b T b T

σ ρ− σ
ρ =
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ρ =

σ σ + σ − σ σ ρ
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φ
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φ
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T

φ

φ

 σ  
+ σ φ + σ φ +     

=
σ

 



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( )

2 2 2
1 1 2
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1 2 1 2

0
ln

2 2
.

2

S T b T

a z
K

T b T bT

  σ σ
− +  
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σ + σ − ρσ σ



Proof . We need to estimate the following expectation:

( ) ( )( )
( )

( ) ( )( )
( )( )( )

2
1

2

1 2 .
b

b
Q

Q dP
a z c S TdQ S T

E S T

E S T S T K I I   >     ≥ 
 

 

 
 
 − − 
 
  

 

The first indicator function has already been considered in equation (29); the term in the second 
indicator function was considered in equation (45) of Appendix C. We can rewrite the above expecta-
tion in the following way:
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                 ( ) { } ( ) { } { }1 1 1

2 2 2

1 2 .Q Q QK K K
K K K

E S T I I E S T I I KE I I     ≤ ≤ ≤     ≤ ≤ ≤  
∈ ∈ ∈

  
         
∈ ∈ ∈

     
     − −     
          

  

  (37)

We can apply the two-asset lemma to each of the three terms in equation (37). Before that, how-
ever, we need to estimate the correlation coefficient between 1∈  and 2∈ ,

( ) ( ) ( ) ( )

( )

1 2

1 1 2 2 2 2 1 1

2 2 2
1 1 2 2

2 1 2 2 1 1 1 2

2 2 2
1 2 1 2

2

,
2

Q Q Q Q

Q

W T W T bW T W T
E

T T b T b T

b b T

T b T b T

φ

φ

∈ ∈

   φ + φ σ − σ ρ = =    σ σ − σ σ ρ + σ    
σ φ ρ+ σ φ − σ φ − σ φ ρ

=
σ σ + σ − σ σ ρ

where we used the fact that

( ) ( )2 ,E W T Var W T T   = =  

and

( ) ( )] [ ( ) ( )1 2 1 2 .E W T W T Cov W T W T T = = ρ 

Combining this result with the results of equations (29) and (45), and applying the two-asset lemma 
to the first term of equation (37),
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E S T I I S x y ≤  ≤ 
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∈
∈



 
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  (38)
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
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,
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,
2

.
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T b T b T
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φ

= + σ ρ

= + σ ρ
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ρ =

σ − σ σ ρ + σ

σ φ ρ+ σ φ − σ φ − σ φ ρ
ρ =

σ σ + σ − σ σ ρ

φ ρ+ φ
ρ = −

σ



The second term of equation (37) evaluates to

    ( ) { } ( )  ( )
1

2

2
2 22 2 30 , , ,Q K
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E S T I I S x y ≤  ≤ 
 

∈
∈



 
  = Φ ρ 
  

   (39)

where
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
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,
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.
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φ
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σ ρ− σ
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The last term of equation (37) is

         { }
 ( )

1
2

3 3 3, , ,Q K
K

KE I I K x y ≤  ≤ 
  

∈
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 
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  (40)

where





3

3

,

.

x K

y K

=

=



Combining equations (38), (39) and (40), we get the formula stated in equation (36).
The existence of closed-form formulas for estimating CvaR-optimal option prices, as per Theorems 

1 and 2, allows constant rebalancing of the replicating portfolio at any moment in time t T≤ , which 
is vital for risk management purposes.

5 Numerical Illustration and Application to Regulatory Needs
To see how the methodology would apply to the real market data, we have downloaded the closing 
price data for Apple Inc. and S&P500 index from 1st January 2013 to 28th March 2018, with overall 
1319 observations. Having transformed the prices to logarithmic returns and having annualised the 
returns, we obtained the following standard deviations: 1 20.24, 0.12σ = σ = , where subscript 1  refers 
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Figure 1. CVaR for varying level of initial capital at 99% confidence level
Source: The authors.
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to Apple Inc. and subscript 2  to S&P 500 index. The annualised returns are: 1 20.14, 0.11µ = µ = . An 
investor expects to earn a higher rate of return on Apple Inc. to compensate for higher volatility. The 
estimated correlation coefficient over the period was 0.5068ρ = . We have standardised the initial 
prices to be equal

( ) ( )1 20 0 78.4329S S= =

The institution has sold an option to exchange a single unit of S&P500 for the unit of stock of 
Apple Inc. with an expiration date of one year from now. The price required for complete hedging is 
determined via equation (6) to be equal to 6.49p = . We estimate CVaR at 99%. Refer to Fig. 1, where 
we plot the level of 0.99CVaR  for varying levels of the initial capital available as a percentage of the 
arbitrage-free price.

Table 1 summarises the results of the simulation. We can see that the normal approximation 
underestimates CVaR for all levels of initial capital available. It is an expected result given that the 
normal approximation provides lower price estimates when compared with the BS-approximation. We 
note that both approaches offer only an approximation to the true level of CVaR because there is no 
exact pricing formula for equation (5).

We can further supplement our analysis by looking at CVaR-efficient portfolios from a regulatory 
point of view. Suppose that a regulator in the market requires the member institutions to keep a 

Table 1
CVaR at 99% confidence level

Capital Available, %
CVaR

Normal approximation BS-approximation

0 68.9700 69.0788

10 26.0501 27.4378

20 18.9578 19.8209

30 14.4591 15.1719

40 11.1611 11.7549

51 8.4916 9.0196

61 6.2363 6.7189

71 4.2763 4.7194

81 2.5743 2.9413

91 0.9873 1.3326

100 0.0000 0.0000

Source: The authors.
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certain amount of capital in reserves depending on the estimated level of CVaR. Let β  be the neces-
sary amount of capital per unit of CVaR exposure. Denote by

      ( )( )  ( )( )  ( )0 0 0V CVaR V Vλ = β +    (41)

the total amount of capital to be kept in reserves provided that the amount of  ( )0V  has been used 
for hedging purposes at the significance level  . Then the CVaR  of an unhedged position is ( )0 .λ  
Introduce the following ratio:

                                 
 ( )( )
( )

0
.

0

Vλ
Θ =

λ





  (42)

The ratio tells us the relative attractiveness of a CVaR-efficient portfolio. Where 1Θ < , engaging 
in CVaR-efficient hedging allows the institution to use less capital to meet the regulatory requirement 
as compared to an unhedged position and vice versa. We apply this line of analysis to our Apple Inc. 
and S&P500 portfolio at a 99%  significance level, and the results we show in Fig. 1.

The above figure clearly indicates that the higher the regulatory requirements, the more attractive 
a CVaR-efficient portfolio is compared to a portfolio with no hedging. Also, the graph of the relative 
attractiveness of the CVaR-efficient portfolio as a function of the level of initial capital used is U-shaped, 
meaning that the relative effectiveness is more sensitive to changes in the capital employed in the 
tails of the graph. The reader can clearly see this effect from Table 1. The concavity of the graph in the 
markets with regulatory requirements means that we can optimise concerning the amount of initial 
capital to be used to maximise the replicating portfolio’s effectiveness.

6 Conclusion
In this paper, we have investigated the problem of constructing CVaR-efficient portfolios under capital 
constraints in the Margrabe market model setting. The two different spread option pricing formulas 
used provided comparable results. However, neither of the two methods provides an exact solution 
since no closed form PDF for the difference between two log-normal random variables exists to this 
moment.

 
Figure 2. The relative attractiveness of CVaR-efficient portfolio at 99% confidence level

Source: The authors.
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APPENDIXES
Appendix A Two-asset lemma

Lemma 1. Let ( ) ( )2, , ,x x y yX N Y N∼ µ σ ∼ µ σ  and ( )2,z zZ N∼ µ σ  be three normally distributed random 

variables with correlations , ,XY XZ YZρ ρ ρ  . Then,

    ( ) { } { }
 ( )

2
2exp exp , , ,

2
z

z XYX x Y yE Z I I x y< <

 σ − = −µ + Φ ρ    
  (43)

where
 ,x

z XZ
x

x
x

− µ
= + σ ρ

σ


y
z YZ

y

y
y

− µ
= + σ ρ

σ

and 2Φ  denotes the two-dimensional normal cumulative distribution function (see Melnikov (2011)) .

Appendix B Comparison results for normal approximation and BS-approximation

Table 2
Spread option: value approximation. The different formulas are from top to bottom: Monte-Carlo simulation, BS-
approximation, the normal approximation

 1σ
T

0.5 1 3 5

0.1

4.8886 6.9092 11.937 15.372

4.885 6.9041 11.928 15.361

4.8399 6.8061 11.404 14.228

0.15

5.1504 7.2788 12.573 16.188

5.1447 7.2708 12.559 16.17

5.1124 7.1577 12.103 15.121

0.2

5.7911 8.1831 14.127 18.179

5.7833 8.172 14.108 18.153

5.7503 8.0437 13.445 16.897

0.25

6.7008 9.4663 16.327 20.99

6.6925 9.4544 16.305 20.959

6.6062 9.2315 15.358 18.908

0.3

7.7852 10.994 18.937 24.313

7.7771 10.983 18.913 24.277

7.7153 10.651 17.074 20.852

Source: The authors.

On Approximate Pricing of Spread Options via Conditional Value-at-Risk



48

Table 3
Spread option: absolute error

 1σ
T

0.5 1 3 5

0.1

0 0 0 0

–0.0036 –0.0051 –0.009 –0.011

–0.0487 –0.1031 –0.533 –1.144

0.15

0 0 0 0

–0.0057 –0.008 –0.014 –0.018

–0.038 –0.1211 –0.47 –1.067

0.2

0 0 0 0

–0.0078 –0.0111 –0.019 –0.026

–0.0408 –0.1394 –0.682 –1.282

0.25

0 0 0 0

–0.0083 –0.0119 –0.022 –0.031

–0.0946 –0.2348 –0.969 –2.082

0.3

0 0 0 0

–0.0081 –0.011 –0.024 –0.036

–0.0699 –0.343 –1.863 –3.461

Source: The authors.

Table 4
Spread option: percentage error

 1у
T

0.5 1 3 5

0.1
0.00% 0.00% 0.00% 0.00%

–0.07% –0.07% –0.08% –0.07%
–1.00% –1.49% –4.47% –7.44%

0.15
0.00% 0.00% 0.00% 0.00%

–0.11% –0.11% –0.11% –0.11%
–0.74% –1.66% –3.74% –6.59%

0.2
0.00% 0.00% 0.00% 0.00%

–0.13% –0.14% –0.13% –0.14%
–0.70% –1.70% –4.83% –7.05%

0.25
0.00% 0.00% 0.00% 0.00%

–0.12% –0.13% –0.13% –0.15%
–1.41% –2.48% –5.93% –9.92%

0.3

0.00% 0.00% 0.00% 0.00%

–0.10% –0.10% –0.13% –0.15%

–0.90% –3.12% –9.84% –14.24%

Source: The authors.
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Appendix C BS-approximation
Consider the following expression:

   

( ) ( )( )
( ) ( )( )

( )( )( )

( )
( ) ( )( )

( )( )( )
( )

( ) ( )( )
( )( )( )

( ) ( )( )
( )( )( )

2
1

2

2 2
1 1

2 2

2
1

2

1 2

1 2

.

b

b
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b b

b b
Q Q

b

b
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Q
c S T

S T
E S T

Q Q
c S T c S T

S T S T
E S T E S T

Q
c S T

S T
E S T

E S T S T K I

E S T I E S T I

E KI

 
 
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 

 

   
   

≥ ≥   
   

   

 
 

≥ 
 

 

 
 
 − − 
 
  

   
   
   = −   
   
      

 
 
 −  
 
  

  (44)

The term in the denominator is

( )( )( ) ( )( ) ( )( ) ( )( ) ( )22
22

2 2 2 2 2

1
0 exp exp 0 exp .

2 2

b b bQ
Q Q

b b TbT
E S T S E bW T S

   σ −σ  = − σ =        

Let us now simplify the term in the indicator function:

       ( ) ( )( )
( )( )( )

2
1

2

,

b

b

Q

c S T
S T

E S T
≥ ( ) ( ) ( )

2 2 2
1 2

1 1 1 2 20 exp exp ,
2 2

Q QT b T
S W T c bW T

   σ σ
− + σ ≥ − + σ      

     

                                          
( ) ( ) ( )

2 2 2
1 1 2

2 2 1 1

0
ln .

2 2
Q QS T b T

bW T W T
c

  σ σ
− + ≥ σ − σ  

  (45)

Since

( ) ( ) ( )2 2 2
2 2 1 1 1 1 2 20,� 2 ,Q QbW T W T N T b T b Tσ − σ ∼ σ − σ σ ρ + σ

the inequality in equation (45) is equivalent to 3,d∈≤

where

( ) ( ) ( )2 2 1 1

2 2 2
1 1 2 2

0,1 ,
2

Q QbW T W T
N

T b T b T

σ − σ
∈= ∼

σ − σ σ ρ + σ

( ) 2 2 2
1 1 2

3 2 2 2
1 1 2 2

0
ln

2 2
.

2

S T b T

c
d

T b T b T

  σ σ
− +  

=
σ − σ σ ρ + σ

Consider the first term in the original expectation, i. e. equation (44),
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                    ( )

( ) ( )( )
( )( )( )

( ) ( )( ) { }3
2

1
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2
1

1 1 1 10 exp exp
2b

b
Q

Q
Q Q d

c S T
S T

E S T

T
E S T I S E W T I ∈≤ 

 
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 
 

 
 

 σ   = − σ      
  

  (46)

Applying the two-asset lemma to the expectation term,

( )( ) { }
( )

3

2
1 21

1 1 3 2 2 2
1 1 2 2

exp exp ,
2 2

Q
Q d

b TT
E W T I d

T b T b T
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   σ − σ ρσ σ = Φ +       σ − σ σ ρ + σ 

which leads to
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1 1 10 ,
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1 3 1 1 ,d d T= + σ ρ
( )1 2

1 2 2 2
1 1 2 2

.
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σ − σ ρ
ρ =

σ − σ σ ρ + σ

Let us consider the second term of equation (44),
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Applying the two-asset lemma again, we have
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( ) ( )
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where

2 3 2 2 ,d d T= + σ ρ
( )1 2

2 2 2 2
1 1 2 2
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2

b T

T b T b T

σ ρ− σ
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σ − σ σ ρ + σ
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Finally, the third term of equation (44) is simply

    
     
     

( ) ( )( )
( )( )( )

( )
2

1

2

3 .
b

b
Q

Q
c S T

S T
E S T

E KI K d 
 
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 

 

 
 
  = Φ 
 
  

  (48)

Combining those three term, we get the BS-approximation as in equation (11).
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ABSTRACT
This paper proposes a method of comparing the prices of European options, based on the use of probabilistic 
metrics, with respect to two models of price dynamics: Bachelier and Samuelson. in contrast to other studies 
on the subject, we consider two classes of options: European options with a Lipschitz continuous payout 
function and European options with a bounded payout function. For these classes, the following suitable 
probability metrics are chosen: the Fortet-Maurier metric, the total variation metric, and the Kolmogorov 
metric. it is proved that their computation can be reduced to computation of the Lambert in case of the 
Fortet-Mourier metric, and to the solution of a nonlinear equation in other cases. A statistical estimation 
of the model parameters in the modern oil market gives the order of magnitude of the error, including the 
magnitude of sensitivity of the option price, to the change in the volatility.
Keywords: Bachelier model; Samuelson model; option pricing; probabilistic metrics; sensitivity; volatility
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Близость моделей Башелье и Самуэльсона 
для различных метрик

Сергей Смирновa, Дмитрий Сотниковb

aФакультет ВМК, МГУ имени М. В. Ломоносова
bФакультет ВМК, МГУ имени М. В. Ломоносова

АННОТАЦИЯ
В статье представлен метод сравнения цен европейских опционов, основанный на использовании веро-
ятностных метрик, применительно к двум моделям динамики цен —  Башелье и Самуэльсона. В отличие 
от других работ на данную тему, рассматриваются классы опционов, а именно европейские опционы 
с функцией выплат, удовлетворяющих условию Липшица, а также европейские опционы с ограниченной 
функцией выплат. Для данных классов выбираются подходящие вероятностные метрики: метрика Фор-
те-Мурье, метрика полной вариации и метрика Колмогорова. Мы доказали, что их вычисление сводится 
к вычислению W -функции Ламберта в случае метрики Форте-Мурье и к решению некоторого нелиней-
ного уравнения в остальных случаях. Статистическая оценка параметров моделей на современном не-
фтяном рынке указывает на порядок величины погрешности, включая величину чувствительности цены 
опциона к изменению показателя волатильности.
Ключевые слова: модель Башелье; модель Самуэльсона; ценообразование опционов; вероятностные ме-
трики; чувствительность; волатильность
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1 Introduction
Description of Models and Motivation 
for the Study
In this study, the simplest continuous-time fi-
nancial market models are considered. The 
movement of prices [ ]0,( )t t TX ∈  of an asset in the 
market is described in the framework of the 
Bachelier model (Bachelier, 1900), using the sto-
chastic Brownian motion process:

( ) [ ] ( )0 1 , 0, ,# 1B
t B tX X t W t T= + α + σ ∈

w h e r e  [ ]0,( )t t TW ∈  i s  t h e  W i e n e r  p r o ce s s , 
, 0Bα ∈ σ > .

The model proposed by Samuelson1 (1965) 
uses geometric (economic) Brownian motion to 
describe the price dynamics:

[ ] ( )0exp , 0, ,# 2S
t S tX X t W t T= γ + σ ∈  

where , 0Sγ ∈ σ > .
In both models, the volatilities Bσ  and Sσ  are 

chosen so that they have the dimension 1/2[time]−  
and the linear trend α  and exponential trend γ  
have the dimension 1[time]− .

Hereafter, the prices considered are assumed 
to be discounted, which is equivalent to a zero 
risk-free interest rate.

The Black-Scholes (1973) and Merton (1973) 
option pricing model is based on the Samuelson 
model (describing price dynamics in the market) 
and is the most popular in practice. Similarly, 
for the options on futures Black’s (1976) pricing 
model is based on Samuelson’s model.

Bachelier (1900) not only described the dy-
namics of prices but also built a model of option 
pricing. However, Samuelson (1965) noted that 
the stock prices should not be negative; thus, 
Bachelier’s model has not been widely used in 
practice. Nevertheless, for short-term options, 
the Bachelier model can better fit the real market 
data than the Black-Scholes–Samuelson model 
(e. g., Versluis (2006)). Note that the Bachelier 
model and its modifications have been applied 
to modern works on mathematical finance. For 
example, the Bachelier model and its modification 
with an absorption screen was used by Glazyrina 
and Melnikov (2020) for pricing life insurance 
policies with an invested stock index option, and 
Melnikov and Wan (2021) compared this model 
with the Bachelier and Samuelson models.

An unprecedented event occurred on April 20, 
2020, when West Texas Intermediate (WTI) crude 
oil futures prices (the benchmark for U.S. crude oil 
prices) reached negative levels (see CFTC Interim 
Staff Report, Trading in NYMEX WTI Crude Oil 
Futures Contract Leading up to, on, and around 
April 20, 2020). Fuel supply has far exceeded the 
demand due to the coronavirus pandemic. Due 
to overproduction, the storage tanks were so full 
that it would have been difficult to find room for 
new oil if the future contracts had been brought 
to delivery. Because the May contract expired on 
April 21, market participants with long positions 
did not want to take delivery of oil (which no one 
needed at that point in time) and incur storage 
costs and opted to lock in such large losses by 
entering into offset deals that the prices turned 
negative. As of April 22, 2020, the Chicago Mer-
cantile Exchange (CME) switched to the Bachelier 
pricing model for the options on futures for several 
energy commodities2 to account for the possibility 
of negative prices.

In this regard, it is interesting to compare the 
prices of derivative financial instruments obtained 
using the above-described models. Schachermayer 
and Teichmann (2005) proved the following esti-
mation for the price difference of a call option “at 
the money” with an expiration at the moment T:

300 ( ) .
12 2

B S

X
C C T≤ − ≤ σ

π

Here, B Sσ = σ = σ  and ,B SC C  denote the op-
tion prices in the Bachelier and Samuelson mod-
els, respectively. Both processes (1) and (2) are 
diffusion processes; thus, the Bachelier and Sam-
uelson models are clearly close in case of small 
(and equal) values of integral volatility 

B ST T Tσ = σ = σ . Meanwhile, the Samuelson 
model is close3 to the Bachelier model with  
 
a linear trend 21

2
γ + σ .

Grunspan (2011) obtained an asymptotic re-
lation between implicit volatilities for normal 
and lognormal models at 0T →  and compared 
the sensitivities (greeks) for call options. The 
differences in option pricing obtained using the 
Bachelier and Samuelson models are detailed in 
Thomson (2016).

Another question is for what values of B Tσ  
and S Tσ  models can be considered close? We 
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are interested in the problem of comparing the 
prices of a European option with an arbitrary pay-
off function ( )f ⋅  that belongs to a specific class 
of functions and depends only on the price TX  
of the underlying asset at the time of expiration 
T . For each of the models (1) and (2), there ex-
ists a single equivalent risk-neutral (martingale) 
measure. The option price ( ),P f T  with payout 
function ( )f ⋅  and time to expiration T  is deter-
mined as the mathematical expectation relative 
to the corresponding risk-neutral measure4:

( ) ( )*, .TP f T f X= 

The processes given by relations (1) and (2) are 
martingales if and only if

( )
2

0, .# 3
2
Sσ

α = γ = −

Therefore, the difference between the option 
prices ( ),BP f T  and ( ),SP f T  in the Bachelier and 
Samuelson models can be expressed as follows:

( ) ( ) ( ) ( ) ( ), , ,# 4B S
B S T TP f T P f T Ef X Ef X− = −

where the process parameters are chosen ac-
cording to (3).

The estimate for the right part of (4) can 
be obtained by calculating the distance in the 
Fortet–Mourier metric between the distribu-
tions of random variables ,B S

T TX X  in case of 
Lipschitz continuity of the payoff function 

( )f ⋅ . If the payout function is discontinuous 
but bounded (e. g., as in the case of a binary 
option), the total variation metric can be used 
for the estimation. However, the Kolmogorov 
metric can also be used to compare the binary 
option prices; the closeness of distributions 
under the total variation metric is a very strong 
assumption, and hence, the corresponding es-
timate is rougher (but applicable to a broader 
class of payout functions).

To compare the Bachelier and Samuelson 
models, it is interesting to find the optimal rela-
tion between the volatilities ,B Sσ σ . Optimality 
is understood as the dependence between these 
indicators that arises when minimizing the dis-
tance between B

TX  and S
TX  in (one or another) 

probability metric ( ),d ⋅ ⋅ .
In this paper, the Fortet–Mourier metric be-

tween random variables B
TX  and S

TX  is calcu-

lated and the formulae for the total variation 
metric and Kolmogorov metric are obtained. 
The dependence of volatilities that minimizes 
the Fortet-Mourier metric between B

TX  and S
TX

. Using the probability metrics, the estimates 
for (4) are obtained to analyze the effect of 
model choice on option price. By constructing 
confidence intervals for volatilities in the oil 
market for standard and binary call and put 
options, we evaluate the error resulting from 
the approximate measurement of the volatility.

Notation and Definitions
Let S  be a metric space with metric ( ),d ⋅ ⋅  and 
let us denote by ( )S  the set of all signed 
measures on S  and ( ) ( )S S⊂   as the set of 
all probability measures on S  equipped with 
Borel σ -algebra.

Definition 1. Let us define a semi-norm in the 
space ( )Lip S  of the Lipschitz continuous on S  func-
tions as follows:

 
( ) ( )

( ) ( ) ( )
,

sup , .
,Lip

x y

f x f y
f f Lip S

d x y

−
= ⋅ ∈ 

Definition 2. In the space ( )B S  of bounded 
measurable functions on S , let us define the norm

( ) ( ) ( )sup , .B
x S

f f x f B S
∈

= ⋅ ∈ 

Definition 3. For S =   in the space ( )St   of 
piecewise constant functions with finite number of 
jumps 1, , m∆ … ∆ , we define a semi-norm

( ) ( )
1

| |, .
m

St j
j

f f St
=

= ∆ ⋅ ∈∑  

The introduced semi-norm is a norm in space 
( ) /St   .
Definition 4. By the coupling of two random 

variables X  и Y , we call5 a pair ( ),X Y′ ′ for which 
the following is true ' ',

d d

X X Y Y= =  . For the monotone 
coupling of real random variables X  и Y  with dis-
tribution functions ( ) ( ),X YF F⋅ ⋅ , we call a pair of

( ) ( )( ) ( )1 1, , 0,1 ,X YF U F U U− − ∼ 

where XF  is the distribution function of a random 
variable X , which is defined as

( ) ( ),XF x X x= <
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and 1F −  is the generalized inverse function of the 
monotonically non-decreasing left-continuous 
function, defined via the relation6

( ) ( ){ }
( ){ } ( )

1 inf :

sup : , 0,1 .

F y x F x y

x F x y y

− = ∈ ≥ =

= ∈ < ∈





Let ( ),δ ⋅ ⋅  be a metric in the space of random 
variables taking values in S , defined on pairs 
of ( ),X Y  of random variables, with a common 
probability space.

Definition 5. The minimal metric with respect 
to ( ),δ ⋅ ⋅  is the metric

 ( ) ( ) ' ', inf , : , .
d d

X Y X Y X X Y Y= = δ = δ


′ 


′

Note that ( )� ,δ ⋅ ⋅  is therefore a metric in the 
space of distributions and does not depend on 
the joint distribution of X  and Y .

Let   be a set of measurable functions 
:f S →  . Then, for each signed measure µ  on 

S  such that | |
S

f dµ < ∞∫  for all f ∈ , the fol-

lowing semi-norm can be defined:

* sup .
f

S

fd
∈

µ = µ∫ 


Denote ( ){ }*:S= µ ∈ µ < ∞    .
Definition 6. We can say that on   the dual 

semimetric if

( ) *, .d µ ν = µ − ν  

In particular, for the probabilistic measures 
( )S= ∩    ,

( ) ( ) ( ), sup .
f

d X Y f X f Y
∈

= − 


Let ( ),S   be a measurable space.
Definition 7. The total variation norm for a 

signed measure µ  is defined as

( )sup : , 1 .TV B

S

fd f B S f
  µ = µ ∈ ≤ 
  
∫   

Definition 8. A total variation metric is a prob-
ability metric

( )1 2 1 2, .TV TVd Q Q Q Q= − 

If distributions 1 2,Q Q  are absolutely continu-
ous with respect to the measure µ  and have Ra-
don–Nikodym densities ( ) ( )1 2,p p⋅ ⋅ , then

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2

,

2 ( ) ,# 5

TV

S

S

d Q Q p x p x dx

p x p x dx+

= − µ =

= − µ

∫

∫

where ( )max ,0a a+ = .
Definition 9. If S =  , then the Kolmogorov 

metric7 is
( ) ( ) ( ), sup .K X Y

x
d X Y F x F x

∈
= −



Definition 10. The Fortet-Mourier metric8 is 
the probability metric

( ) ( ) ( )
1

, sup .
Lip

FM
f

d X Y f X f Y
≤

= −
 

 

There is also an equivalent representation of 
this metric:

  ( ) ( ) ( )' ', min , : , .# 6
d d

FMd X Y d X Y X X Y Y= = ′ =  
 

′

The proof of equivalence of the definitions 
can be found in Rachev, Klebanov, Stoyanov, and 
Fabozzi (2013).

It has been shown (e. g., Bogachev (2007)) that 
in case of S =  , the minimum value in (6) is at-
tained on the monotone coupling

( ) ( )( ) ( )1 1, , 0,1 .X YF U F U U− − ∼ 

Remark 1. The Fortet-Mourier metric allows 
one to derive an upper estimate of (4) in the case of 
Lipschitz continuity of ( )f ⋅ , for example, if ( )f ⋅  is 
piecewise linear (which corresponds to the portfolio 
of call and put options) . It is also possible to estimate 
(4) by using the total variation metric if the func-
tion ( )f ⋅  is bounded . Even if the payout function is 
neither Lipschitz continuous nor bounded (e . g ., if it 
corresponds to a portfolio of binary and call options), 
it can most likely be represented as a sum of ones, 
as in practice, the payout functions usually do not 
grow faster than linear ones . The Kolmogorov metric 
provides a more accurate estimate than the total 
variation metric; however, it is only applicable to 
piecewise constant payout functions corresponding 
to a portfolio composed of binary options .

Definition 11. Lambert W  function is a com-
plex-valued function : ,W →   defined as a solu-
tion of the equation ( ) ( ), .W zz W z e z= ∈
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( )W ⋅  cannot be expressed in elementary func-
tions. We are only interested in its two branches, 

( ) ( )0 1,W z W z− , at ( )1,0z e−∈ −  (Fig. 1), which cor-
respond to the real solutions of the equation

( )1, ,0 .xxe z z e−= ∈ −

The definition and notation are taken from 
Corless, Gonnet, Hare, Jeffrey, and Knuth (1996).

2 Main Results
Let us show how one can obtain the estimates 

for (4) by using the introduced probability metrics. 
Let, as mentioned above, ( ) ( ), , ,B SP f T P f T  stand 
for the prices of European options with payoff 
function ( )f ⋅  and time to expiration T  in the 
Bachelier and Samuelson models, respectively. Then, the following estimates are true:

If ( ) ( )f Lip⋅ ∈  , then

( ) ( ) ( ) ( ), , , .# 7B S
B S Lip FM T TP f T P f T f d X X− ≤ 

If ( ) ( )f B⋅ ∈  , then

( ) ( ) ( ) ( ), , , .# 8B S
B S B TV T TP f T P f T f d X X− ≤ 

If ( ) ( )f St⋅ ∈  , then

( ) ( ) ( ) ( ), , , .# 9B S
B S St K T TP f T P f T f d X X− ≤ 

Indeed, the price of a European option is defined in the Bachelier and Samuelson models as a 
mathematical expectation of the payout function relative to the risk-neutral measure:

( ) ( ) ( ) ( ), , , ,B S
B T S TP f T f X P f T f X= = 

where the processes ,B S
t tX X  are martingales, i. e., 

2

0,
2
Sσ

α = γ = − .

Then,
( ) ( ) ( ) ( )( ), , .B S

B S T TP f T P f T f X f X− = −

1. In case of Lipschitz continuity of ( )f ⋅ ,

( ) ( ) ( ) ( ) ( )
1

, , sup ,
Lip

B S B S
B S Lip T T Lip FM T T

g
P f T P f T f g X g X f d X X

≤
− ≤ − =

 

    

2. If ( )f ⋅  is bounded, then

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

, ,

, .

B S
T T

B S
T T

B S X X

B S
B B TV T TX X

P f T P f T f x p x p x dx

f p x p x dx f d X X

− = − ≤

≤ − =

∫

∫   





Here, ( ) ( ),B S
T TX X

p p⋅ ⋅  denote the densities of random variables ,B S
T TX X .

 
Figure 1. Real-valued branches 

of Lambert W -function

Source: The authors.

Proximity of Bachelier and Samuelson Models for Different Metrics



57

3. The function ( ) ( )f St⋅ ∈   can be represented as

( ) ( ) ( ) ( )
1

, .
j

m

T j T j j x K
j

f X f f X f x >
=

= −∞ + = ∆∑ 

For each function, ( )jf ⋅  it is true that

( ) ( ) ( ) ( ) ( ), , , .S B
T T

B S
B j S j j j j j K T TX X

P f T P f T F K F K d X X− = ∆ − ≤ ∆

( ) ( ) ( ) ( ) ( )
1 1

, , | , , | ,
m m

B S
B S B j S j j K T T

j j

P f T P f T P f T P f T d X X
= =

− ≤ − ≤ ∆ =∑ ∑
( ), .B S

St K T Tf d X X= 

Note 2: If the payout function can be represented as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , , ,# 10f f f f f Lip f B f St⋅ = ⋅ + ⋅ + ⋅ ⋅ ∈ ⋅ ∈ ⋅ ∈  

then

( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , , , .# 11B S B S B S
B S Lip FM T T B TV T T St K T TP f T P f T f d X X f d X X f d X X− ≤ + +     

The representation (10) is obviously not unique . Moreover, ( )3f ⋅  is unnecessary as soon as any piecewise 
constant function with a finite number of jumps is bounded. Nevertheless, a proper choice of functions 

( ) ( )1 2,f f⋅ ⋅  и  ( )3f ⋅  in expansion (10) can significantly improve the estimate (11).
The following statements provide methods of calculation of the metrics appearing in (7)–(9).
Finding ( ),B S

FM t td X X  is reduced to the calculation of the metric between random variables 
( )2

1 1,ξ ∼ µ σ  and ( )2
2 2,η ∼ µ σ  that have normal and lognormal distributions. The value of this 

metric is given by the following theorem.

Theorem 1
Let ( ) ( )2 2

1 1 2 2, , ,ξ ∼ µ σ η ∼ µ σ   . Then, under the condition ( )2 2
2 1

1 1

ln 1 0,# *
 σ σ

+ µ − µ + < σ σ 
,

the metric can be found with the formula

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

1 2 1 1 1 2

2
2

2 2 2 1 2

, 2 1 2

# 12
exp 1 2 ,

2

FMd k k k k

k k

 ξ η = µ Φ − Φ − + σ φ − φ + 
 σ  + µ + − Φ − σ − Φ − σ   
 

where ( )Φ ⋅  is a cumulative distribution function of the standard normal distribution, ( )φ ⋅  is the density 
of the standard normal distribution, and 1k  and 2k  are equal to

( )
1 2 2

1 0 2 1
1 2 1 1

1 2 2
2 1 2 1

1 2 1 1

1
exp ,

# 13
1

exp .

k W

k W−

  µ σ σ
= − − − µ − µ  σ σ σ σ  

  µ σ σ
= − − − µ − µ  σ σ σ σ  

If condition (*) is not satisfied, then

( ) ( )
2
2

1 2, exp .# 14
2FMd

 σ
ξ η = −µ + µ + 

 
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Corollary 1. When trends and volatilities are chosen such that processes (1) and (2) are martingales 
(i. e., relation (3) is satisfied), the formula for the metric between distributions of the random variables 

,B S
t tX X  can be expressed as

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 2 1 2 2 1 2

2 1

, 2 (

),# 15

B S
FM t td X X X k k k k

k k

   = Φ − Φ − Φ − σ − Φ − σ   
 − φ − φ 

where 1 2,B St tσ = σ σ = σ  denote the integral volatilities, and 1 2,k k  are calculated as follows:

( )

2
2 2 2

1 0
1 2 1 1

2
2 2 2

2 1
1 2 1 1

1 1
exp ,

2
# 16

1 1
exp .

2

k W

k W−

  σ σ σ
= − − − − −  σ σ σ σ  

  σ σ σ
= − − − − −  σ σ σ σ  

The following theorem answers the question about the optimal relation between Bσ  and Sσ  

minimize the Fortet–Mourier metric in the risk-neutral case.

Theorem 2
For fixed 2σ , the minimum of expression (15) is attained at

2
2

2
2

* 2
1 2

2

1
.

ln 1 1
2

e

e

−σ

−σ

σ −
σ =

σ  + + − 

For fixed 1σ , the minimum in (15) is attained at *
2,σ which is a solution of the equation 1 2 22 ,k k+ = σ  

where 1 2,k k  are determined from (16) .
The calculation of the total variation metric and the Kolmogorov metric between B

TX  and S
TX  can 

be reduced to solving a nonlinear equation. This result is formulated in Theorem 3.

Theorem 3
L ( ) ( )2 2

1 1 2 2, , ,ξ ∼ µ σ η ∼ µ σ  , and 
2
2

1 21,
2

σ
µ = µ = −  . Then,

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 3 3 2 2, 2 ,# 17TVd F x F x F x F x F x F xξ η ξ η ξ η
 ξ η = − + − − − 

( ) ( ) ( ) ( )
1,2,3

, max ,# 18K i i
i

d F x F xξ η=
ξ η = −

where 1 2 3x x x≤ ≤  are the roots of the equation

( ) ( )
2 2

2 2 2 2 21 1 2 2
1 1

2 1

2 ( ) (ln ) 3 ln 1 2 ln 0,# 19
4

x x x x
 σ σ σ σ

− − − σ + − − σ = σ σ 

and the cumulative distribution functions have the form ( ) ( ) ( ) 21
0

1 2

ln
, .x

xx
F x F xξ η ≥

 − µ − µ
= Φ = Φ  σ σ   



Corollary 2. According to Definitions 8 and 9,

( ) ( )
0 0 0 0

, , , , , .
B S B S

B S B ST T T T
TV T T TV K T T K

X X X X
d X X d d X X d

X X X X

   
= =      
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In the risk-neutral case, ( )
2

2 2

0 0

1, , , ,
2

B S
ST T

S S

TX X
T T

X X

 σ
∼ σ ∼ − σ  
   and the metrics are calculated by 

Theorem 3 by taking into account that 1 2,B ST Tσ = σ σ = σ  .

3 Proofs of Theorems
Proof of Theorem 1
The cumulative distribution functions of ,ξ η  are

( ) ( ) ( ) 21
0

1 2

ln
, .x

xx
F x F xξ η ≥

 − µ − µ
= Φ = Φ  σ σ   



Then, their inverse functions can be expressed as

( ) ( ) ( ) ( )1
2 21 1 1

1 1 , .uF u u F u e
−µ +σ Φ− − −

ξ η= µ + σ Φ =

As the minimum in (6) is attained on the monotone coupling, we obtain

( ) ( ) ( ) ( )2 2 1
1 1, , 0,1 .Z

FMd Z e Z Uµ +σ −ξ η = µ + σ − = Φ ∼ 

The expectation is considered here with respect to the measure Z  induced by a random variable Z .
Let us divide the space of elementary events into three disjoint sets:

{ }2 2
1 1 1: ,ZD Z eµ +σ= ω µ + σ >

{ }2 2
2 1 1: ,ZD Z eµ +σ= ω µ + σ <

{ }2 2
3 1 1: .ZD Z eµ +σ= ω µ + σ =

As ( )3 0,D =  ( )1 2 1 ,D D holds=∪  and therefore,

( ) ( ) ( )2 2 2 2

1 21 1 1 1, .Z Z
FM D Dd Z e e Zµ +σ µ +σ   ξ η = µ + σ − + − µ + σ      

By definition, the set 1D  is either empty or comprises those ω  for which ( )1 2,Z k k∈  for some real 
1 2,k k as the graph of a linear function can lie above the graph of an exponent only within a finite 

interval.
In case of 1D = ∅ , considering that the expectation of the lognormal distribution with parameters 

2
2 2,µ σ  is equal to 

2
2

2exp
2

 σ
µ + 

 
, we obtain

( ) ( ) ( )2 2

2
2

1 1 1 2, exp .# 20
2

Z
FMd E e Zµ +σ  σ ξ η = − µ + σ = −µ + µ +  

 

If ( ){ }1 1 2: ,D Z k k= ω ∈ , then as it is much more convenient to work with 1D  than with 2D , we 
eliminate the indicator 

2D . Using the formula

2 1D DX X X= −    

for ( )2 2
1 1

ZX e Zµ +σ= − µ + σ , we get

( ) ( ) ( )2 2

1

2
2

1 2 1 1, exp 2 .# 21
2

Z
FM Dd E e Zµ +σ σ  ξ η = −µ + µ + − − µ + σ   

 

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As ( ) ( ) ( )1 2 1 ,D k k= Φ − Φ  we need to calculate 
1DZ   и  2

1

Z
Deσ  .

To find the first moment of a random variable 
1
,DZ   we find its Laplace transform

( ) ( )

( ) ( ) ( )

2

1

1

2

1

2

1 2 1

1
1 exp

22

1 exp .
2

D

k
Z

k

x
Ee P D x dx

P D k k

−λ  
ψ λ = = − + −λ − = 

π  

 λ  = − + Φ + λ − Φ + λ   
 

∫

As the first moment exists, it is equal to

( ) ( ) ( )
1 1 20 .DZ k k= −ψ = φ − φ′ 

Now, let us find

( ) ( )
2

2

1

1

22
2

2 2 2 1 2

1
exp exp .

2 22

k

Z
D

k

x
e x dx k kσ    σ  = σ − = Φ − σ − Φ − σ    π    

∫ 

Combining the above formulas, we obtain

( ) ( ) ( )( ) ( ) ( )

( ) ( )( )
2
2

2

1 2 1 1 1 2

2
2 2 1 2

, 2 1 2

1 2 .

FMd k k k k

e k k
σ

µ +

   ξ η = µ Φ − Φ − + σ φ − φ +   

 + − Φ − σ − Φ − σ 

To obtain the final result, it is necessary to calculate 1 2,k k  and find the conditions under which 
1D  is nonempty. If 1D  is nonempty, then 1 2,k k  are the roots of the equation

( )1 1 2 2exp .# 22x xµ + σ = µ + σ  

Now, let us make the variable replacement ( )2 1
1 1

1 1 2

,
y

y x x
σ µ

= − µ + σ = − −
σ σ σ

. Then, the equation is 

transformed into

1 2
2 1

2 1

exp ;y y
 σ σ

− = µ − µ − σ σ 

( )2 2
2 1

1 1

exp .# 23yye
 σ σ

= − µ − µ σ σ 

The right-hand side is negative, so (23) has two real solutions (i. e., 1D  is nonempty) only in the 

case of 12 2
2 1

1 1

exp e− σ σ
− µ − µ > − σ σ 

 (see the definition of the Lambert W ). Taking the logarithm of 

this inequality, we obtain (*).
If condition (*) is satisfied, the roots of (23) are found using the W  function:

2 2
1 0 2 1

1 1

exp ,y W
  σ σ

= − µ − µ  σ σ  

2 2
2 1 2 1

1 1

exp .y W−

  σ σ
= − µ − µ  σ σ  
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By substituting these solutions into the inverse replacement 1

1 2

y
x

µ
= − −

σ σ
, we obtain (13), which 

completes the proof of the theorem.

Proof of Corollary 1
If ,X Y  are random variables, it immediately follows from (6) that

( ) ( ), , , .FM FMd cX cY c d X Y c= ∈

Thus,
( ) ( )

2

0 0, 1 ,exp , .
2

B S S
FM t t FM B t S t FM

t
d X X X d W W X d

  σ
= + σ − + σ = ξ η  

  

Here, we designate 
2

1 , exp
2
S

B t S t

t
W W

 σ
ξ = + σ η = − + σ 

 
. Clearly,

( ) ( ) ( )2 2
1 1 2 2, , , ,# 24N LNξ ∼ µ σ η ∼ µ σ

where 
2

2 2 2 2
1 2 1 21, , ,

2
S

B S

t
t t

σ
µ = µ = − σ = σ σ = σ .

Let us show that condition (*) is satisfied. Suppose that for some 1 20, 0σ > σ > , this is not true. 
Then, through (14), ( ), 0FMd ξ η =  (i. e., 

d

ξ = η ). We obtain the contradiction with (24). Substituting the 
parameter values into formula (12) of Theorem 1, we obtain (15) and (16).

Proof of Theorem 2
1. Let us fix 2 0σ >  and consider an optimization problem

( )
1 0

, minFMd
σ >

ξ η →

From (15) and (16) and the continuous differentiability of W  for 1 2, 0σ σ > , the function ( ),FMd ξ η  
is found to be continuously differentiable with respect to 1σ  at 1 2, 0σ σ > . Moreover, the values close 
to zero and a very large value of 1σ  are not optimal. Hence, the minimum point satisfies the neces-
sary condition

( )
1

,
0.FMd∂ ξ η

=
∂σ

Substituting into (21) the martingale values of parameters and differentiating it by 1σ  using the 
Leibniz integral rule, we obtain

( )

( ) ( )

( ) ( ) ( )

1

2 2

1 1

2

11

2
2

2 1
1 1

2
2

2 1
1

2
2

2 1 1 2

,
2 exp 1

2

2 exp 1 2
2

2 exp 1 | 2 2 .
2

FM
D

k k

k k

k
Dk

d
Z Z

z z z dz z z dz

z z z Z k k

  ∂ ξ η σ∂= − − + σ − − σ =  ∂σ ∂σ    
  σ∂= − − + σ − − σ φ = φ −  ∂σ   

  σ  − φ − + σ − − σ = = φ − φ      

∫ ∫

 

 

Here, the term with substitution is equal to zero, as 1 2,k k  are the roots of (22).
Thus, the point 1σ  is optimal if and only if

( ) ( )1 2 1 2 .k k k kφ = φ ⇔ =
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Let us show that the case 1 2k k=  is impossible. Indeed, if 1 2k k= , then from (15), ( ), 0FMd ξ η = ; 

that is, 
d

ξ = η . We obtain the contradiction with

( ) ( )2 2
1 1 2 2, , , .ξ ∼ µ σ η ∼ µ σ 

Thus, 2 1k k= − . From (16), we obtain

( ) ( )0 1 2 ,W z W z−+ = − δ

where we designate 
2

2 2 2 2

1 1 1

, exp
2

z
 σ σ σ σ

δ = = − − − σ σ σ 
. Adding to this equation the definition of the 

Lambert W  function, we obtain the system

( ) ( )
( ) ( )

( ) ( )

0

1

0 1

0

1

2
W z

W z

W z W z

W z e z

W z e z−

−

−

 + = − δ
 =


=

Solving it, we determine

( ) 2 2
0 ( ) ,W z zeδ= −δ + δ −

( ) 2 2
1 ( ) .W z zeδ

− = −δ − δ −

Hence, from (16)

2
2

2 1
1

1
1 .k k e−σ= − = −

σ

Let us substitute the determined value of 2k  into (22)

2 2
2 2

2
2 2

1

1 1 exp 1 .
2

e e−σ −σ σ σ
+ − = − + − σ 

From this, we can easily express as

2
2

2
2

* 2
1 2

2

1
.

ln 1 1
2

e

e

−σ

−σ

σ −
σ =

σ  + + − 

2. Analogically to the first point, we equate to zero the derivative

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2 2

1 1

2 2

1 2

2
2

2 1
2 1

2
2

2 2 2 2

1 2 2 2

,
2 exp 1

2

2 exp 2
2

2 2 0.

FM
D

k k

k k

k

k

d
Z Z

z z z dz z z dz

yd y k k
−σ

−σ

  ∂ ξ η σ∂= − − + σ − − σ =  ∂σ ∂σ    
 σ

= − − σ − + σ φ = − − σ φ − σ = 
 

 = − Φ = − φ − σ − φ − σ = 

∫ ∫

∫

 
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From here, 1 2 2 2k k− σ = − σ . Again, considering the impossibility of case 1 2k k= , we obtain
1 2 22 .k k+ = σ

Proof of Theorem 3
From (5), we obtain

( ) ( ) ( )( ) ( ), 2 ,# 25TV

A

d p x p x dxξ ηξ η = −∫

where set ( ) ( ){ }:A x p x p xξ η= >  —  is the union of intervals whose endpoints are the roots of the 
equation

( ) ( ).p x p xξ η=

This equation has only positive roots as ( ) ( )0, 0p x p xξ η> =  at 0x ≤ . Let us write it out explicitly 
and transform it.

2 22
2

2 2
1 21 2

(ln / 2)1 ( 1) 1
exp exp ;

2 2

xx

x

   + σ−− = −   σ σσ σ   

( )
4

2 2 22 2
22 2

1 1 2

1 1
ln ln 2 1 ( ln ) ln ;

42 2
x x x x x

  σ σ
+ = − + − + σ +  σ σ σ   

( )
2 2 2

2 2 2 2 22 1 1 2
1 1 12

1 2

2 ln 2 ln 2 1 (ln ) ln ;
4

x x x x x
 σ σ σ σ

σ + σ = − + − − σ − σ σ 

( )
2 2

2 2 2 2 21 1 2 2
1 1

2 1

2 ( ) (ln ) 3 ln 1 2 ln 0.
4

x x x x
 σ σ σ σ

− − − σ + − − σ = σ σ 

Let us denote the left part of the equation by ( )h x  and find the derivatives of this function:

( ) ( )
2

21 1

2

32ln
' 2 1 ( ) ,

x
h x x

x x

σ σ
= − − −

σ

( ) ( ) 2
21 1

2 2
2

2 1 ln 3
2 ( ) .

x
h x

x x

−σ σ
″ = − +

σ

Equality ( ) 0h x′ =  is equivalent to ( ) 2 21
1

2

2 1 2( ) ln 3x x x
σ

− = + σ
σ

, which has exactly two roots for 

geometric reasons. Hence, the function ( )h x  has two local extrema on ( )0,+∞ . Let us denote them 
by * *

1 2,x x  and * *
1 2x x< .

As ( ) ( )
0

lim , lim
x x

h x h x
→ + →+∞

= −∞ = +∞ , the equation ( ) 0h x =  has ( )0,+∞  at most three roots. As 

( ) ( )p x p xξ η>  at 0x <  and at 0x >  ( ) ( )p x p xξ η> , when ( ) 0h x < , set A  can be represented as

( ) ( ) ( )1 2 3, , .# 26A x x x= −∞ ∪
If the equation has less than three roots, consider 2 3x x= . Combining (26) with the integral rep-

resentation of the total variation metric (25), we obtain the required statement.
To find the Kolmogorov metric, consider the function ( ) ( ) ( ).g x F x F xξ η= −  As ( )lim 0

x
g x

→∞
=  at the 

point at which the maximum of the modulus is reached, we have the equality ( ) ( ) ( ) 0.g x p x p xξ η= − =′
The solutions of this equation are the roots of 1 2 3, ,x x x  obtained in (19). Hence,
( ) ( ) ( ) ( ) ( )

1,2,3
, max max .K i i

x i
d F x F x F x F xξ η ξ η∈ =

ξ η = − = −

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4 Numerical Analysis
Calculation of the Fortet-Mourier Metric
The value of the Fortet-Mourier metric in 
(12) cannot be expressed in elementary func-
tions. This is an expected result, which nat-
urally arises when dealing with normal and 
lognormal distributions: the distribution 
function ( )Φ ⋅  appears, for example, in the 
Black-Scholes formula (Black and Scholes, 
1973). However, in (12) the Lambert W , which 
is much less frequently used function than 

( )Φ ⋅ . Nevertheless, many mathematical pack-
ages allow calculating the value of any of its 
branches, which simplifies the numerical cal-
culation of the formula.

Calculation of the Total Variation Metric and the Kolmogorov Metric
Let us discuss here the numerical computation of the total variation metric.

Calculation ( ),TVd ξ η  Using Quadrature Methods
One of the approaches for the calculation of the total variation metric is the calculation (see (5)) of 
the integral

( ) ( )2 ( )p x p x dx+
ξ η−∫



using quadrature methods.
As

( ) ( ) ( )( ) ,p x p x p x+
ξ η ξ− ≤

and ( )1 1,ξ ∼ µ σ , we will approximate the integral by the proper one

( ) ( ) ( ) ( )
1

1

( ) ( ) .p x p x dx p x p x dx
+δ

+ +
ξ η ξ η

−δ

− ≈ −∫ ∫


As for 0x < ,

( )
2 2 21 1 1

exp exp exp ,
2 2 22 2 2

x x
t t t x

x dt dt
x x−∞ −∞

     
Φ = − ≤ − = − −     

π π π     
∫ ∫

the approximation error does not exceed

( ) ( )
1 2

1
2

1 1

2
2 2 exp .# 27

2
p x dx

−δ

ξ
−∞

   σδ δ= Φ − ≤ −  σ δ π σ   
∫

Now, let us estimate the accuracy of the integral calculation

( ) ( )
1

1

( )p x p x dx
+δ

+
ξ η

−δ

−∫

 
Figure 2. Function graph ( )h ⋅  at 1 2 1σ = σ =

Source: The authors.
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by using the trapezoidal method. The integrand function here is not twice continuously differentiable; 
however, (26) indicates that it has no more than three break points. As the function is zero at each 
break point, the integration error in the mesh section containing these points does not exceed 2

13 ,M h  
where

( )
( ) ( )' '

1
1 ,1
max

x
M p x p xξ η∈ −δ +δ

= − .

Combining this with the standard estimation for the trapezoidal rule (Samarsky and Gulin, 1989), 
we obtain

( )2
2

2 1

2
3 ,

12

h
M M h

δ
Ψ ≤ +

where Ψ  is the error incurred in the integration calculations performed on a grid of size N , 
2

h
N

δ=  
grid step, and 

( )
( ) ( )2

1 ,1
max

x
M p x p xξ η∈ −δ +δ

= ″ − ″ .

As ( )
1 1

1 1x
p xξ

 −= φ σ σ 
considering ( ) ( )x x x′φ = − φ , we find

( ) ( )
2

'
3 3 5

1 1 11 1 1

1 1 1 1 ( 1) 1
, .

x x x x x
p x p x″

ξ ξ
     − − − − −= − φ = − φ + φ     σ σ σσ σ σ     

( )
( )

( )
( )

2
'

23 31 ,1 1 ,1
11 1

1
max , max 1 .

2 2x x
p x p x″

ξ ξ∈ −δ +δ ∈ −δ +δ

 δ δ≤ ≤ + σπσ πσ  

Using ( ) 2

2 2

ln1 x
p x

xη
 − µ

= φ σ σ 
, we can find

( ) ( ) ( ) ( )( ) ( ) ( ) 3
' 2

2 2 3 2
22 2 2

3 ( ) 1
, 2 ,

d x d x d xd
p x d p x

x x
″

η η

 φ −σ +
= − φ = + + σσ σ σ 

where we designate ( ) 2

2

ln
.

x
d x

− µ
=

σ

Let us assume that 1 0,− δ > which will be true in practice as the values of volatilities are usually 
small. Let us denote

( )
( ) ( ) ( )2 2*

1 ,1
2 2

ln 1 ln 1
max max , .

x
d d x

∈ −δ +δ

 − δ − µ + δ − µ
= =  σ σ 

Then,

( )
( )

*
' 2

2 21 ,1
2

max ,
2 (1 )x

d
p xη∈ −δ +δ

σ +
≤

πσ − δ

( )
( )

* * 3

231 ,1
2 22

1 3 ( ) 1
max 2 .

2 (1 )x

d d
p x″

η∈ −δ +δ

 +≤ + + σ σπσ − δ  

Combining the obtained inequalities, we find

3 2 * * 3

3 2 3 22
21 1 2 2

*2
2

3 2 22
1 2

2 1 1 3 ( ) 1
1 2

(1 )3 2

12
.

(1 )2

d d

N

d

N

    δ δ +Ψ ≤ + + + + +    σσ σ σ − δ σπ      
 σ +δ δ+ + σ σ − δπ  
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Calculation of ( ),TVd ξ η  using the Monte Carlo method

The same integral can be calculated using the Monte Carlo method, as

( ) ( ) ( )
( ) ( ) ( )

( )( ) (1 ) [1 ] ,
p x p

p x p x dx p x dx
p x p

η η+ + +
ξ η ξ

ξ ξ

ξ
− = − = −

ξ∫ ∫
 



where the expectation is taken with respect to the distribution of a random variable ( )pξξ ∼ ⋅ .
We simulate the independent random variables ( )1, , nX X pξ… ∼ ⋅  and approximate the integral by 

1

1 n

i
i

Y
n =
∑ , where 

( )
( )2(1 )i

i
i

p X
Y

p X
η +

ξ

= − . The mean-square deviation in this case can be expressed as

( ) 2

1 1

1 1 2
( , )

n n

i TV i
i i

Y d Var Y
n n n= =

 
− ξ η = ≤ 

  
∑ ∑

Numerical Solution of a Nonlinear Equation
Let us now discuss the numerical solution of (19). Consider the case that has exactly three roots 

(for cases with fewer roots, the algorithm will be similar). As in the proof of Theorem 3,

( ) ( )
2 2

2 2 2 2 21 1 2 2
1 1

2 1

2 ( ) (ln ) 3 ln 1 2 ln ,
4

h x x x x x
 σ σ σ σ

= − − − σ + − − σ  σ σ 

( ) ( )
2

21 1

2

32ln
' 2 1 ( ) ,

x
h x x

x x

σ σ
= − − −

σ

( ) ( ) 2
21 1

2 2
2

2 ln 1 3
2 ( ) .

x
h x

x x

−σ σ
″ = + +

σ

Equation ( ) 0h x′′ =  has exactly one root, which means that the function ( )h z  has one inflection 
point that lies between *

1x  и  *
2x  (Fig. 2), and therefore, it is concave on ( )*

10,x  and convex on ( )*
2, .x +∞   

 
This ensures that Newton’s method for the root 1x  with an initial point ( )0

1x  such that ( )0
1 1x x<  

converges to the root. For the same reason, Newton’s method will converge to root 3x  at the initial 
point ( )0

3 3x x> . Root 2x  can be localized by the bisection method for 1 3,x x    and then calculated by 
Newton’s method.

According to Samarsky and Gulin (1989), if ( )h ⋅  is twice continuously differentiable in the neigh-

borhood ( )*
rU x  of root *x  of the equation ( ) 0h x = , and

( )

( )
( )

( )
( )

* *

0*
2

1 2
1

1, inf , sup .
2 r r

x U x x U x

M x x
q m h x M h x

m ∈ ∈
′

−
< ′′= = =

Then, Newton’s method converges to *x , and

( ) ( ) ( )0* 2 1 * .# 28
kkx x q x x−− ≤ −

Thus, for convergence, it is sufficient to assume that in some neighborhood of the root, the second 
derivative is bounded and the first one is strictly separated from zero.

At ( )0
1x x> ,
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( )( )
( )

0
2

121 1
2 0 20 2

2 11

1 ln 3
2 2( ) max ,1

( )( )

x
M

xx

 −σ σ ≤ + +
 σ
 

,

and at the localization of the root, the minimum 
of the modulus of the first derivative is attained 
at one of the segment endpoints, where it can be 
computed explicitly. Therefore, by partitioning the 
segment until 1q < , we can achieve a guaranteed 
rate of convergence (28).

Results of Numerical Calculations
The results of metric calculation and optimal 
values * *

1 2,σ σ  for the Fortet-Mourier metric at 

( )
2
2

1 2 1 2, 0,1 , 1,
2

σ
σ σ ∈ µ = µ = −  are presented in 

Figs. 3 and 4.
The contour lines show that the distances between random variables ,ξ η  tend to zero as 

1 20, 0σ → σ → . This is because of the convergence of distributions ,ξ η  to the Dirac measure as the 
volatilities tend to zero.

Application of the Estimates to Certain Options
In this section and hereafter, when referring to processes (1) and (2), we imply that they are martin-
gales; that is, (3) is satisfied.

Estimates (7)–(9), as well as the formulas for the metrics, show that the significant parameters 
determining the difference between the models are the integrated (or cumulative) volatilities, de-
noted by 1 2,σ σ .

The application of estimates (7)–(9) to some types of options is shown below.

Put and Call Options
The payoff function of a standard call option ( ) ( )C T Tf X X K += −  is Lipschitz continuous with the 
Lipschitz constant equal to 1. Therefore, from (7),

( ) ( ) ( ) ( )0, , , , .B S
B S FM T T FMP f T P f T d X X X d− ≤ = ξ η

 

 
 

Figure 3. Contour lines ( ),FMd ξ η  and optimum values 
( ) ( )* *

1 2 2 1,σ σ σ σ  plots

Source: The authors.

Figure 4. Contour lines ( ),TVd ξ η  and ( ),Kd ξ η
Source: The authors.
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Let us use the data obtained by Bachelier (1900). 
Consider an option with the time to exercise equal 
to one month, for which the integral volatility 
equals 1 2 0.008σ = σ = σ ≈ . Then, we find

( ) ( ) ( )5
0, , 3.1 10 .# 29B C S CP f T P f T X−− ≤ ⋅

Exactly the same estimate is true for a put op-
tion.

It is also interesting to compare this estimate 
with that obtained by Schachermayer and Teich-
mann (2005) for a call option “at the money” (i. e., 
for 0K X= ):

( ) ( )
3

00 , , .
12 2

B C S C

X
P f T P f T

σ
≤ − ≤

π

For the same value of σ  on the right-hand side, we get 8
01.6 10 X−≈ ⋅ . Of course, this exceeds the 

accuracy of (29) by three orders of magnitude; however, the estimation with the Fortet–Mourier metric 
allows us to work with a very wide class of payoff functions and therefore is a more universal method.

Binary Options
Consider a binary call option with payout function

( ), .
TB C T X Kf X M ≥= 

Then, from (8),

( ) ( ) ( ), ,, , , .B S
B B C S B C TV T TP f T P f T Md X X− ≤

Substituting the Bachelier’s data, we obtain

( ) ( ) 3
, ,, , 6 10 .B B C B B CP f T P f T M−− ≤ ⋅

As it was noted, the total variation metric provides less accurate but still acceptable estimate.
Let us also apply (9):

( ) ( ) ( ) 3
, ,, , , 1.6 10 .B S

B B C B B C K T TP f T P f T Md X X M−− ≤ ≈ ⋅

The Kolmogorov metric gives a more accurate result, which, however, has the same order as that 
of the total variation metric.

Estimation of Volatility Using the Oil Market Prices
Let us now try to apply the obtained estimates to the current data. For this purpose, it is nec-
essary to evaluate the parameters ,B Sσ σ  of models (1) and (2). Furthermore, we apply statisti-
cal estimation methods assuming that the data satisfy the Bachelier model or the Samuelson 
model. For real market prices, the distribution of their increments or the increments of their 
logarithms is poorly approximated by the normal distribution and the increments themselves 
are not independent (e. g., the effect of volatility clusters occurs). These effects are considered 
using time-series models with conditional heterogeneity (ARCH models) that allow to describe 
the asset price behavior more precisely. In addition, the processes obtained using these mod-
els, with appropriate normalization, converge to diffusion ones (Gouriéroux, 1997; Th. 5.15). 

 
  Figure 5. daily price increments

Source: The authors.
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It can justify their application to the estimation of parameters of Bachelier and Samuelson 
models. However, when comparing these models, we are interested in a rough evaluation of 
the volatility9.

Consider price tX  as the closing price for WisdomTree WTI Crude Oil from January 2017 to No-
vember 2018 (Figure 5). Let us consider dimensionless values

0

, 0,1, , 335.t
t

X
Y t n

X
= = … =

According to the Bachelier model, the price increments 1t t tY Y Y −∆ = −  can be represented as

( )1, 0,1 .t B t t t tx W W W W −∆ = α + σ ∆ ∆ = − ∼ 

Thus, as the Wiener process increments are independent, we consider { }tx∆  as a sample of random 
variables having a normal distribution ( )2, Bα σ .

The maximum likelihood estimate Bσ  for the standard deviation from the sample obtained from 
the Gaussian distribution with two unknown parameters, mathematical expectation and variance, is



2

1

1
( ) ,

n

B t t
t

Y Y
n =

σ = ∆ − ∆∑

where

1

1
.

n

t t
t

Y Y
n =

∆ = ∆∑

This estimate gives an approximate value for the volatility  0.0144Bσ ≈ .

In the Samuelson model, the logarithm increments

( ) ( )2ln , .t S t SY W∆ = γ + σ ∆ ∼ γ σ

Estimating the standard deviation similarly, we obtain  0.0150Sσ ≈ .

Let us construct a confidence interval for the obtained estimates with confidence level q . For the 
sample 1, , nZ Z…  obtained from normal distribution with two unknown parameters, the mathemat-

ical expectation µ  and variance 2σ , the random variable 
2

2
1

( )n
ni

i

Z Z

=

−
σ∑  has a distribution of ( )2 1nχ −  

(e. g., DeGroot and Schervish (2011)). Therefore, to estimate the maximum likelihood �σ  of the scale 

parameter σ , we have


( ) ( )
2

1 2 1 2 1 12
,n nn q− −

 σγ < < γ = χ γ − χ γ = 
 σ 



where ( )1n−χ ⋅  denotes the cumulative distribution function for the law ( )2 1nχ − . Let us choose

1 1
1 1 1 1

1 1
, ,

2 2n n

q q− −
− −

− +   γ = χ γ = χ      

then the corresponding confidence interval for σ  is
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 

2 1

, .
n n 

σ σ γ γ  

For the confidence level 0.99q = , we obtain 

the confidence intervals as follows:

[ ] [ ] ( )0.0131,0.0160 , 0.0136,0.0166 .# 30B Sσ ∈ σ ∈

The obtained results are consistent with the 
normalized values of Chicago Board Options Ex-
change (CBOE) Oil Volatility Index (OVX) over the 
same period of time (Fig. 6). This index is calculated 
similarly to the volatility index (VIX) but uses oil 
options. The OVX values should be interpreted as 
implicit volatility (i. e., volatility calculated based on 
the observed option prices and reflecting appropri-
ate expectations of market volatility behaviour in 
the next month). By contrast, the estimates derived 
from the historical data  ,B Sσ σ  reflect the value 
of realized volatility; therefore, the comparison of 
these values is not entirely correct. Nevertheless, 
our goal is to only estimate the order of magnitudes 

Bσ  и  Sσ ; thus, it is acceptable for a rough evalu-
ation of “engineering character.”

Now we apply the estimate (7) to the call op-
tion with the time to expiration equal to one 
month ( 30T = ) and obtain

( ) ( ) ( ) ( )3
0, , , 4.7 10 .# 31B S

B C S C FM T TP f T P f T d X X X−− ≤ ≈ ⋅

For a binary option with 30T =  and payout M , according to (8),

( ) ( ) ( ) ( )2, , , 7.9 10 .# 32B S
B B S B TV T TP f T P f T Md X X M−− ≤ ≈ ⋅

If we apply (9), we obtain

( ) ( ) ( ) ( )2, , , 2.1 10 .# 33B S
B B S B K T TP f T P f T Md X X M−− ≤ ≈ ⋅

Values of integral volatility
Let us find at what values of the integral volatility parameter the processes ,B S

t tX X  remain “close” 
to each other.

Using the Ito formula (e. g., Øksendal, 1991), we find that ,B S
t tX X  satisfy the stochastic differential 

equations

0 ,B
t B tdX X dW= σ

,S S
t S t tdX X dW= σ

where for a small t  value, the optimal relation between the volatilities is B Sσ ≈ σ .

 
 

 
 

Figure 6. oVX index

Source: The authors.

Figure 7. Process trajectories ,B S
t tX X .

Source: The authors.
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Let us now calculate the variances:

2 2
0 0, ,B B

t B t BVarX X t VarX X t= σ = σ

( ) ( )2 22
0 01 , 1 .S St tS S

t tVarX X e VarX X eσ σ= − = −

The variances and standard deviations depend only on the initial price and integral volatility. 
Assuming 0 1, 1B SX = σ = σ = σ = , let us model both processes (Fig. 7) such that they correspond 
to the same Wiener process tW . At 0.2t ≈ , the standard deviations and the processes themselves 
begin to differ appreciably. This value corresponds to the integral volatility value 0.45tσ ≈ .

For the options considered in the previous section, the integral volatility is approximately equal 
to  0.015 30 0.082Tσ ≈ ⋅ ≈ .

Option Price Sensitivity to Volatility
To validate the above-used estimates (31)–(33), the option price must change insignificantly for 
small changes in volatility. This requirement is based on the fact that the value σ  is never exactly 
known in the model and its estimation leads to an error when calculating the option price. Let us 
estimate the sensitivity vega (see Hull, 2012)

( ),P f T∂
=

∂σ


for standard and binary put and call options.
The price of a standard call option in the Bachelier model is calculated as

( ) ( ) 0 0
0 0

0 0

, .B C B
B B

X K X K
P f T X K T X

T X T X

   − −
= − Φ + σ φ   σ σ   

Its derivation has been provided by Schachermayer and Teichmann (2005). Similarly, the price of 
a standard put option can be determined:

( ) ( ) 0 0
0 0

0 0

, .B P B
B B

K X K X
P f T K X T X

T X T X

   − −
= − Φ + σ φ   σ σ   

Let us find the vega coefficient for these options:

( ) ( ) 0 0 0
0 02

0 0 0

0 0 0
0 02

0 0 0

,

,

B C

B B B B

B
B B B

P f T X K X K X K
X K T X

T X T X T X

X K X K X K
T X X T

T X T X T X

     ∂ − − −
= − φ − + φ +     ∂σ σ σ σ     

     − − −
+σ φ − = φ     σ σ σ  

′
  

as ( ) ( )x x x′φ = − φ .

Similarly, for a put option,

( ) ( ) ( )0
0

,,
.# 34B CB P

B BB

P f TP f T K X
X T

T

  ∂∂ −
= φ = ∂σ ∂σσ 

Proximity of Bachelier and Samuelson Models for Different Metrics



72

In the Samuelson model, the prices of standard put and call options are determined using the 
Black-Scholes formulas:

( )
2 20 0

0

1 1
ln ln

2 2, ,
S S

S C
S S

X X
T T

K KP f T X K
T T

   + σ − σ   = Φ − Φ   σ σ      

( )
2 20 0

0

1 1
ln ln

2 2, 1 1 .
S S

S P
S S

X X
T T

K KP f T X K
T T

      + σ − σ      = − − Φ + − Φ      σ σ               

The derivatives of these quantities obtained by Sσ  are found to coincide. Denoting

2 20 01 1
ln ln

2 2, ,
S S

S S

X X
T T

K Ky y
T T

+ −

+ σ − σ
= =

σ σ

let us find

( ) ( ) ( ) ( ) ( )
0 0

0 2 2

ln ln, , 1 1
.# 35

2 2
S C S P

S S S S

X X
P f T P f T K KX y T K y T

T T
+ −

   
∂ ∂    = = φ − + − φ − −   ∂σ ∂σ σ σ      

For binary call and put options with payout features,

( ) ( ), ,,
T TB C T X K B P T X Kf X M f X M> <= =  .

Accordingly, the price is determined as an expectation with respect to the martingale measure:

( ) ( ) ( ) 0
, ,

0

1 ,B B
B B C B C T T

B

K X
P f f X M X K M

T X

  −
= = > = − Φ  σ  
 

( ) 0
,

0

,B B P
B

K X
P f M

T X

 −
= Φ σ 

( ) ( ) ( )
20

, ,

1
ln

2 ,
S

S S
S B C B C T T

S

X
T

KP f f X M X K M
T

 − σ = = > = Φ σ  

 

( )
2

0
,

1
ln

2
.

S

S B P
S

K
T

X
P f M

T

 + σ 
= Φ 

σ 
  

From this, we find

( ) ( ) ( ), , 0 0
2

0 0

, ,
,# 36

B B C B B P

B B B B

P f T P f T K X K X
M

T X T X

∂ ∂    − −
= − = φ   ∂σ ∂σ σ σ   

( ) ( ) ( )
20 0

, ,

2

1
ln ln, , 12 .# 37

2

SS B C S B P

S S S S

X X
TP f T P f T K KM T

T T

   − σ∂ ∂    = − = φ − −   ∂σ ∂σ σ σ      
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Let us now estimate the order of the price calculation error that appears due to an inaccurate meas-
ure of volatility. This error approximately equals to ∆σ , where   is the option vega coefficient and 
∆σ  is the volatility measurement error. As options «at the money» have the greatest liquidity, their 
study is of the greatest interest. Therefore, we further assume that 0, 30K X T= = . From (34) and (35) 
considering confidence intervals (30), we obtain that for the standard options with the confidence 
probability, equal to 0.99, the error approximation of ( ) ( ), ,B C S CP f T P f T−  calculation does not exceed



3
0 0 0

1
max max 7 10

2 2
SB S

T
X T T X X− ∆σ + φ σ ∆σ ≈ ⋅  π

For binary options with 0, 30K X T= = , according to (36) and (37), with confidence probability 
0.99, the error approximation does not exceed



31 1
max 1.8 10 .

2 2
S SM T T M− φ σ ∆σ ≈ ⋅  

The resulting estimates differ from (31)-(33) by no more than an order of magnitude. Thus, with 
the estimation methods used, the error associated with an inaccurate measurement of the volatility 
can make almost the same contribution to the option price as a model change.

In this section, sensitivity estimation is obtained only for the options of a special form. When 
applying similar methods for classes of functions, the accuracy of the estimation deteriorates con-
siderably. Let us estimate the vega coefficient in the Bachelier model: if we denote ( )p ⋅  as the den-

sity of the random variable 
0

TX

X
, then the price of the European option with payout function ( )f ⋅  

and time to expiration T  can be found as ( ) ( ) ( )0, .BP f T f yX p y dy
∞

−∞

= ∫

Based on (1) and (3), the function ( )p ⋅  can be expressed as ( ) 1 1

B B

y
p y

T T

 −= φ σ σ 
.

After changing the variables 
1y

z
T

−= , we obtain

( ) ( )( )0

1
, 1 .B

B B

z
P f T f T z X dz

∞

−∞

 
= + φ σ σ ∫

Let us differentiate the integral by parameter Bσ . The differentiation performed under the integral 

is possible for all 0Bσ > , as, considering Bσ  on each finite interval, the function ( )
B

p
f

 ∂ ⋅ ∂σ 
 will be 

majorized by an integrable function that does not depend on Bσ .

( ) ( )( )
( )( ) ( ) ( )

( )

2

0 2 4

2
0

1
, 1

# 38
1

1 .

B

B B BB B

B
B

P z z z
f T f T z X dz

f T z X z z z dz

∞

−∞
∞

−∞

    ∂
= + − φ + φ =    ∂σ σ σσ σ     

 = + σ −φ + φ σ

∫

∫

For a bounded function ( ) ( )f B⋅ ∈  ,

( ) ( ) ( ) ( )2 2
, .# 39B B

B
B B B

P f
f T z z z dz f

∞

−∞

∂  ≤ φ + φ = ∂σ σ σ∫ 

 
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For the Lipschitz continuous functions, we will use the inequality

( ) ( )0 0 .Lipf x f X f x X≤ + − 

Considering that

( ) ( )32 4
| | , | | ,

2 2
x x dx x x dx

∞ ∞

−∞ −∞

φ = φ =
π π∫ ∫

( ) ( )( ) ( ) ( )

( )
( )

2
0 0

0
0

1
,

# 40
2 6

2

B
Lip B

B B

Lip
B

P
f T f X f T z X z z z dz

f X
T X f

∞

−∞

∂  ≤ + σ φ + φ ≤ ∂σ σ

≤ +
σ π

∫  

 

According to estimates (39) and (40), as well as the confidence interval (30), the calculation error 
( ),BP f T  for a standard call (put) option in money with 30T =  does not exceed

2
0 0

6
30max 2 10 ,

2
B X X−∆σ ≈ ⋅ ⋅

π

and for a binary option with 0, 30K X T= =  does not exceed



2
0.22 .

B

M M= ⋅
σ

The resulting accuracy estimates are inferior to those obtained using the exact representation 
of the vega coefficient for these options by one or two orders of magnitude, which is expected as a 
consequence of the universality of the estimates.

5 Conclusion
The approach based on the use of probability metrics enables the estimation of how much 
the transition from one model to another affects the price of a European option with a payout 
function from a certain class (represented as a sum of Lipschitz continuous and bounded func-
tions). This price change can be estimated by using an appropriate probabilistic metric and the 
norm (or semi-norm) of the payout function in a suitable function space. However, the main 
factor affecting the value of the estimation is the integral volatility, at a large value of which 
the Bachelier and Samuelson models, which are essentially arithmetic and geometric random 
walks, cease to be similar. As expected, the estimates obtained using the Fortet-Mourier met-
ric were the most accurate, whereas the use of the total variation metric and the Kolmogorov 
metric led to similarly less accurate results. Moreover, the calculation of the latter two metrics 
was reduced to the numerical solution of the same nonlinear equation describing the points of 
intersection of normal and lognormal densities.

For the oil market, measures of realized volatility were estimated and confidence intervals were 
constructed assuming that the models are true. By calculating the sensitivity (vega coefficient) for 
standard and binary options, the error arising in the estimation of model parameters was found to 
be comparable to the change in price when the model changed.
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Footnotes
1 Apparently, Samuelson was the first economist to propose this modification of the Bachelier model. There-
fore, we use the term “Samuelson’s model.”
2 For a complete list of contracts, see CME Group Advisory Notice 20–171, 2020.
3 This follows directly from the Ito formula.
4 The assumptions made in Bachelier’s thesis (in an informal way) actually mean that the price process is a 
martingale.
5 The term “coupling” is also used in random process theory in a different sense; see, for example, Sverchkov, 
and Smirnov (1990).
6 The generalized inverse function defined in this manner is also left-continuous. In this case, the random 
variable ( )1F U− , where U  is uniformly distributed on ( )0,1  random variable, has a distribution function 
equal to F .
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7 This metric forms the basis of the nonparametric criterion of the same name, which is based on the theorem 
proved by Kolmogorov (1933).
8 Also, Kantorovich metric, Wasserstein metric, and Dudley metric. The variety of names can be explained by 
many equivalent representations (for details, see Rüschendorf, https://wwwhttps://www.encyclopediaofmath.
org/index/index.php?title=Wasserstein_metric=Wasserstein_metric).
9 An exposition of the statistical analysis concerning volatility has been presented by Melnikov, Volkov, and 
Nechaev (2001), paragraph 4.3. In contrast to this study, we use the maximum likelihood estimation (instead 
of an unbiased estimation with uniformly minimal variance) for the volatility, as such estimation for bijec-
tive transformation of the parameter reduces to this transformation of the parameter estimate. Among other 
things, this is applicable when determining implicit volatility.
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End points of this interval characterise the minimum and maximum average of discounted pay-off function 
over the set of equivalent risk-neutral measures. By estimating these end points, one constructs super 
hedging strategies providing a risk-management in such contracts. The current paper analyses an interesting 
approach to this pricing problem, which consists of introducing the necessary amount of auxiliary assets such 
that the market becomes complete with option price uniquely determined. one can estimate the interval of 
non-arbitrage prices by taking minimal and maximal price values from various numbers calculated with the 
help of different completions. it is a dual characterisation of option prices in incomplete markets, and it is 
described here in detail for the multivariate diffusion market model. Besides that, the paper discusses how 
this method can be exploited in optimal investment and partial hedging problems.
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ОРИГИНАЛЬНАЯ СТАТЬЯ

О методе рыночных пополнений  
в задачах оценки стоимости опционов

Илья Васильев, Александр Мельников
Университет Альберты, Эдмонтон, AB, Канада

АННОТАЦИЯ
Задача оценки стоимости опционов является одной из самых важных в области современных математи-
ческих финансов. В случае полного рынка стоимость опциона, исключающая арбитраж, может быть опре-
делена единственным образом посредством усреднения по единственной риск-нейтральной мере. Для 
неполного рынка, однако, риск-нейтральная мера не уникальна и возможно оценить стоимость опциона 
в виде интервала цен, не допускающих арбитраж, которые были бы приемлемы как для продавца, так 
и для покупателя контракта. Граничные точки такого интервала характеризуют минимальную и макси-
мальную стоимость, на множестве эквивалентных риск-нейтральных мер данного рынка, а также средние 
стоимости дисконтированной функции выплаты опциона. Зная границы полученного интервала, в целях 
риск-менеджмента, инвестор формирует супер-хеджирующие стратегии. В настоящей работе приводится 
оригинальный подход к решению проблемы оценки границ безарбитражной стоимости опциона на не-
полном рынке. Суть подхода заключается в добавлении необходимого числа вспомогательных активов 
с целью получения полного рынка, на котором задача имеет единственное решение. Рассматривая все-
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1 Introduction
The problem of option pricing remains one 
of the most attractive and valuable problems. 
Mathematically, this problem admits a perfect 
solution if the market is complete, i. e., every 
contingent claim is attainable in the class of 
self-financing strategies or, equivalently, only 
one risk-neutral measure exists. Averaging 
over such a measure leads to a unique option 
price, called fair price in such a market. In 
an incomplete market, where non-attainable 
contingent claims exist, the situation is much 
more complicated because there are infinitely 
many risk-neutral measures. Averaging given 
discounted contingent claim over each such 
measure, one can get the whole interval of 
non-arbitrage option prices in contrast to one 
price in a complete market. So, in incomplete 
markets, to solve the option pricing problem, 
one needs to calculate the end points of this 
interval or provide their estimates.

In the present paper, we describe a fruit-
ful method of solving the problem mentioned 
above. The leading idea of the proposed method 
is to transform the initial incomplete market 
model in such a way to make it complete and, 
hence, make it possible to calculate the unique 
price for a given contingent claim. Further, con-
sidering all possible transformations of the 
initial model, we get a set of non-arbitrage 
option prices similar to the set that existed in 
the classical approach. These findings lead to 
the dual characterisation of this set via minimal 
and maximal values as lower and upper option 
prices. Such a method of market completions 
was independently proposed for different in-
complete market models: Karatzas (1997) —  
for multivariate diffusion models, Melnikov 
and Feoktistov, (2001) and also Appendix 3 of 
Melnikov (1999) —  for multinomial markets. 
The approach also works for pricing Ameri-
can options too (see, Guilan, 1999). Since that 
time, option pricing theory was tremendously 

developed in different aspects, including im-
perfect hedging, utility-indifference pricing, 
etc. It is pretty natural to expand the range of 
its applications.

We demonstrate that instead of using a set 
of equivalent local risk-neutral measures as a 
parameter for fair price interval estimation, an 
agent can work with an easier-to-interpret set of 
possible completion assets. For obvious reasons, 
this approach opens a way to nice flexibility of 
auxiliary assets and greater practical application 
as one can potentially find necessary assets to 
complete the market.

The method of market completions can mainly 
be used in two different ways. The first approach 
consists in the estimation of the price intervals. As 
there is a set of possible orthogonal completions 
available, one may aim at the estimation of the 
intervals of optimal prices that can be uniquely 
calculated in complete markets. The second ap-
proach is to pick particular completion. This idea 
is similar to choosing a specific measure of risks 
such as Esscher measure or Minimal Relative 
Entropy measure (see, for example, Miyahara, 
1995). The second approach allows us to be more 
specific regarding assets required for the market 
to be complete. In some cases, it might be even 
possible to reverse-engineer such auxiliary as-
sets, for instance, with the help of the BSDE 
technique (see Kobylanski, 2000).

In addition to option pricing problems, in-
vestors are also interested in finding an op-
timal strategy in incomplete market, often 
with some constraints. So, it is natural to look 
towards applying the proposed dual charac-
terisation for these types of problems. There 
is a well-developed study in the area of par-
tial hedging in complete markets. In Föllmer 
and Leukert (1999) and Spivak and Cvitanic 
(1999), authors considered quantile hedging, or 
maximisation of the probability of successful 
perfect-hedging, in Föllmer and Leukert (2000), 
authors also investigated shortfall minimi-

возможные пополнения, возможно также оценить минимальную и максимальную стоимости опционов на 
неполном рынке и получить интервал безарбитражных цен. Такое описание является дуальной характе-
ристикой интервала стоимости опциона на неполном рынке. Авторы детально рассмотрели применение 
данного подхода к многомерной диффузионной модели рынка и обсудили возможность применения 
данного подхода при решении задач неполного хеджирования и оптимального инвестирования.
Ключевые слова: ценообразование опционов; полные рынки; неполные рынки; неарбитражные цены; 
стратегии хеджирования; управление рисками
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sation in line with its utility-weighted value 
minimisation. These articles lay a foundation 
of partial hedging with the help of Neyman-
Pearson lemma and Convex optimisation meth-
ods. Since recently, risk exposure is measured 
with the help of special measures widely used 
by market participants: Value-at-Risk (VaR) 
and Conditional Value-at-Risk (CVaR). The 
latter one is better known as Expected Short-
fall (ES) and was recommended in 2016 in The 
Market Risk Framework of Basel III —  an in-
ternational regulatory accord. These measures 
spark a particular interest in their application 
in the optimal partial-hedging problem. Mel-
nikov & Smirnov (2012) show that it is still 
possible to apply Neyman-Pearson lemma to 
CVaR optimisation. Recent papers Cong et al. 
(2014), Li and Xu (2013), Capinski (2014), and 
Godin (2015) demonstrate a growing interest in 
CVaR optimisation. We will demonstrate how 
the method of market completions becoming a 
useful tool when solving this type of problems 
on an incomplete market.

The rest of the paper is structured as follows: 
Section 2 provides necessary details regarding 
the model under consideration. With the un-
derstanding of the reasons for market structural 
incompleteness, we move on to the central part 
of the paper —  introducing the Method of Market 
Completions, which is discussed in Section 3 in 
line with its comparison to classical methodolo-
gies risk-neutral price interval estimation on 
the incomplete market. Section 4 elaborates on 
connections between market completions and 
some alternative methods used for handling 
market incompleteness. Finally, we briefly cover 
potential further steps towards solving famous 
partial hedging problems on the incomplete 
market in Section 5 and conclude the paper in 
Section 6.

2 Multivariate Diffusion Market Model
To demonstrate results  that  fol low, we 
will  work with the Standard Multidimen-
sional Market Model,  which is defined as 
( ) 1, ( , , , )n

t t t t TB S B S S ≤= … , where ( )t t TB ≤  repre-
sents the value process of a risk-free asset that 
is usually assumed to be a bank account and 

1( , , )n
t t t t TS S S ≤= …  is a n -dimensional vector 

process that describes the prices of n  risky as-
sets:

         
0

1

, 1t t t

k
i i i ij j
t t t t t

j

dB B r dt B

dS S dt dW
=

= =

 
= µ + σ 

 
∑   (1)

We will also call { }
,

ij
t t i j

Σ = σ  a volatility matrix 

of this model. Note that elements of a k -dimen-
sional vector ( )1, , kW W W= …  are independent 
standard Brownian motions. In general, one can 
define a multidimensional market model so that 
each risky asset price is governed by its own 
separate Brownian motions that are mutually 
correlated. However, it was shown, for example, 
in Dhaene et al. (2013), that both mentioned 
models are equivalent. Further in this paper, we 
will use the model with independent “underly-
ing” Brownian motions for illustration.

Let us call the ( )t T≤ -measurable process 
1( , , , )n

t t t t T≤π = β π … π  a portfolio (strategy). This 
process would reflect amounts of correspond-
ing assets possessed by an investor. Obviously, 
the capital or value of such a portfolio can be 
described as

  
1

.
n

i i
t t t t t

i

V B Sπ

=

= β + π∑   (2)

Note that not all strategies would be appro-
priate for the investor. Typically, the agent on 
the market has an initial budget ,x  and the 
natural constraint is that strategy value should 
not fall below some threshold at any moment t  
while strategy is in action. To accommodate this 
condition, denote the class of admissible port-
folios with initial capital x  as

( ) ( ){ }0: ,� 0��s.t.�� ,� .tx V x K V K t Tπ π= π = ∃ π ≥ ≥ − ∀ ≤

For simplicity, we might consider 0K = , 
meaning that the investor does not want his 
portfolio to have negative value at any moment 
until the maturity of the strategy.

Admissible strategy π  is called self-financing 
if the following conditions hold:

2 2

1 10

( ) ( )
T n k

i i i ij
t t t t

i j

dt
= =

 
π µ + π σ < ∞ 

 
∑ ∑∫

0
1 0

.
tn

i i
t s s

i

V V dSπ π

=

= + π∑∫  (3)
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In other words, strategy is called self-financ-
ing if its capital changes only due to changes 
in asset prices without additional injections or 
extractions of capital by the investor. We will 
denote the class of self-financing strategies with 
initial capital x  as ( )SF x .

Definition 0.1: Model is called arbitrage-free if 
there is no strategy ( )SF xπ ∈  such that it has zero 
initial cost of investment and leads to non-zero 
profit at maturity with positive probability:

0 0, ( 0) 0.TV P Vπ π= > >

It is well known that the market model is 
arbitrage-free if and only if there exists an 
equivalent martingale measure. It was shown 
in Karatzas and Shreve (2000) that for the Stand-
ard Multidimensional Market Model (1), the 
no-arbitrage condition could be summarised in 
the following proposition.

Proposition 0.1: If there exists a t t T( ) ≤ − pro-
gressively measurable process 1( , , )k

t t t T≤θ = θ … θ  
that satisfies

     
1

, 1, , , . .
k

ij j i
t t t

j

r i n P a s
=

σ θ = µ − = … −∑   (4)

and
              2

10

1
exp ( ) ,

2

T k
j
t

j

dt
=

  
 θ < ∞ 
   

∑∫   (5)

then the ( ),B S  the market is arbitrage free .
In other words, the market is arbitrage-free 

if system (4) has the solution.
Remark: The inverse Proposition 0 .1 is, in 

general, not true . Condition (4) should hold . How-
ever, Novikov condition (5) is sufficient but not a 
necessary one for uniform integrability of Girsa-
nov exponent and, consequently, for equivalence 
of corresponding risk-neutral measure .

Remark: Solution to the system (4): tθ  is, actu-
ally, the one to use for the famous Girsanov theo-
rem to switch to equivalent risk-neutral measure 
under which discounted risky assets in the model 
(1) become martingales .

Remark: Condition (4) can be equivalently 
written in a vector form:

t t tΣ θ = µ − r

where k
tθ ∈ ; , n

tµ ∈r  [ ]0,t T∀ ∈  .

Denoting 2

1

( )
k

i ij
t t

j =

σ = σ∑  , condition (5) can 
also be written as:

2

0

1
,

2

T
i
texp dt

  
 σ < ∞ 
   

∫  

Market Completeness
Definition 0.2: (Market completeness) The 

market is called complete if for any T − measur-
able payment function ( ) 0TH H= ω ≥ , such that 

[ ]H < ∞  there exists a strategy ( )SF xπ ∈  such 
that a.s.−

( ) .TV x Hπ =

Generally speaking, market incompleteness 
means that sigma algebra S

T  generated by risky 
assets is smaller than   on which contingent 
claims are defined, namely, S

T ⊂  . There might 
be different reasons for market incompleteness, 
including, but not limited to:

1. Structural: There are more sources of risks 
on the market than tradeable assets available. In 
such a case, it is natural to define sigma algebra 
for claims as the one generated by underlying 
sources of risk. In the case of model (1), it would 
be W

T .
2. Informational: Some investors may have 

more information regarding the asset price dy-
namics on the market than others. Typical cases 
of Large investor were described in Eyraud-Loisel 
(2019); Follmer and Schweizer (1991).

3. Due to complex parameters or restric-
tions: When parameters of the model become 
stochastic values (stochastic volatility, stochastic 
drift, etc.) which are not observable explicitly 
on the market.

In this paper, we will focus on the structural 
incompleteness of the market. Condition for 
such incompleteness in case of (1) was obtained 
in Karatzas and Shreve (2000) and Dhaene et al. 
(2013). We summarise them in the following 
theorem.

Theorem 1: Standard financial market   
is complete if and only if a number of available 
stocks n = k, where k is a dimension of underlying 
Brownian motion .

Consequently, to have a complete market, we 
need to have a proper, non-degenerate volatility 
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matrix tΣ  with n k= . As market completeness 
means the existence of a unique martingale 
measure * , the market is complete if system 
(4) possesses the unique solution k

tθ ∈ . Gir-
sanov exponential for transition to that unique 
martingale measure in the multidimensional 
case will be written in the following form:

 
*

2

1 10 0

1
exp ( ) .

2

T Tn n
i i i
t t t

i i

dP
dW dt

dP = =

  = − θ − θ 
  

∑ ∑∫ ∫   (6)

3 Completions of Diffusion Model  
and Option Pricing

We now move on and introduce the method of 
market completions which is the main focus of 
the present paper. First, we formalise the no-
tion of market completion.

As we already noted, markets, in reality, are 
barely complete, so it is reasonable to find a 
way to handle market incompleteness. In the 
previous chapter, we showed that, when speak-
ing about structural incompleteness, such in-
completeness for Standard Multidimensional 
Diffusion market model demonstrated through 
the volatility matrix which rank is not full. Or, 
roughly speaking, when the volatility matrix for 
tradeable assets has a rectangular shape with 
more columns (sources of risks represented by 
independent Brownian motions) than rows (risky 
assets).

In other words, to obtain a complete market 
that would correspond to the existing incom-
plete one, it is reasonable to add more “rows” 
into the volatility matrix under consideration. 
This idea forms a foundation of the method of 
market completions.

Obviously, “completing” assets should be 
independent of existing ones and among each 
other to solve the issue of a non-full rank vola-
tility matrix. Adding them, we obtain a “proper” 
volatility matrix that corresponds to some com-
plete market where known and well-developed 
methods can be applied.

Definitions of the Method of Market 
Completions
Assume the canonical market model (1) with 
n  risky assets for which n k< . As always, as-
set price dynamics is defined on measure space 
( ), ,PΩ   equipped with filtration   generated 

by k -dimensional Brownian motion. We will 
call assets that form this incomplete model 
primary assets or existing assets.

Denote cS  a ( )k n− − dimensional ( )t t T≤ −
adapted process 1( , , )c n k

t t t TS S S+
≤= …  with the 

same structure as primary assets:

1

, 1, , .
k

i i i ij j
t t t t t

j

dS S dt dW i n k
=

 
= µ + σ = + … 

 
∑

With the help of newly introduced assets, we 
can “fix” initially rectangular volatility matrix 
for a set of existing risky assets σ :

         ( )

�

1,1 1,

,1 ,

�

k risks

k
t t

n n k
t t

n k matrix

 
 σ σ
 Σ = = × 
 σ σ
  





  



  (7)

by adding k n−  auxiliary assets introduced:

    ( )

1,1 1,

,1 ,

1,1 1,

,1 ,

�

k
t t

n n k
t t

n n k
t t

k k k
t t

k k matrix
+ +

 σ σ
 
 
 σ σ
 

Σ = = × 
 σ σ 
 
 σ σ 



  





  



   (8)

Which helps us to arrive at a properly shaped 
volatility matrix Σ .

Definition 0.1: The ( )k n− − dimensional 
t t T( ) ≤ − adapted process c n 1 k

t t t TS (S , ,S )+
≤= …  is 

called a completion for the (B, S) market if the 
resulting volatility matrix Σ  has full rank for all 
t T.≤

Definition 0.2: A completion ( )c n 1 kS S ,...,S+=  
is called orthogonal if it satisfies:

[ ]� , �0,�for�all� 1,..., ; 1,..., ; 0,i j
t tS S i n j n k t T= = = + ∈

and

[ ]� , �0,�for�all�, 1,..., ; 0,i j
t tS S i j n k t T= = + ∈

Remark: Operation ,⋅ ⋅  is taken from the 
standard martingale theory and represents the 
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quadratic covariation of martingale parts of the 
processes .

Further in this paper, the set of orthogonal 
completions will be denoted as ort . We dem-
onstrate that any market completion can be 
transformed into an orthogonal form.

Lemma 1: For any completion cS ∈  of the 
( )B,S  market, it is possible to find an orthogonal 
completion c ortS .∈

Proof
It is enough to show that one can always 

construct orthogonal completion from non-
orthogonal assets. It can be accomplished, for ex-
ample, with the help of a famous Gram-Schmidt 
method. Our goal is to construct a process 

( )1, ,c n kS S S+= …  that satisfies the definition 
above.

To do it, we first define the stochastic loga-
rithm ( )i i

t t TH H ≤= :

1

ki
i i ij jt
t t t ti

t j

dS
dH dt dW

S =

= = µ + σ∑

Considering that i j≠ , if , 0i j
t tH H =  for all 

[ ]0,t T∈  then ,i j
t tS S . On the other hand, if row-

vectors i
tσ  and j

tσ  of volatility matrix are or-
thogonal for i j≠  for all [ ]0,t T∈ , then

0 0
10 0

10 0

10

,

,

t tk
i i il l j

s s
li j

t t t tk
j jl l
s s

l

t k
il jl
s s

l

H ds dW H

H H

ds dW

ds

=

=

=

+ µ + σ +

= =

+ µ + σ

σ σ=

∑∫ ∫

∑∫ ∫

∑∫

Consequently, to complete the proof, it is 
enough to show how to construct orthogonal 
row-vectors j

tσ  and it would imply orthogonal-
ity of assets.

To construct such vectors, we will use the 
Gram-Schmidt method of orthogonalisation for 

, 1, ,i
t i kσ = … :

1 1

1

1

,

,

t t

i
i i ij j
t t t t

j

−

=

σ = σ

σ = σ − α σ∑

f o r  2, ,i k= …  w i t h  
,

,

i j
ij t t
t j j

t t

σ σ
α =

σ σ
 f o r 

 
, 2, , ;i j k j i= … < . It is easy to see that obtained 

vectors are indeed orthogonal.
Let us also obtain the assets for completion. 

Defining ( )i i
t t TH H ≤=  for 1, ,i k n= + …  as

1

,
n

i i il j
t t t

l

dH dW
=

= µ + σ∑

with
1 1

1

1

,

,

t t

i
i i ij j
t t t t

j

−

=

µ = µ

µ = µ − α µ∑

for 2, ,i n= … . Final completion assets can be 
obtained from:

, 1,j j j
t t tdS S dH j k n= ∈ +

Remark: Orthogonalisation of drift terms for 
assets in the proof of lemma above plays a rather 
technical role . In such a form, one would get a 
much simpler solution for the (4) .

Working with the Set of Orthogonal 
Completions Instead of ELMM
Let us now demonstrate that working with the 
set of possible orthogonal completions would be 
equivalent to working with the set of equivalent 
local martingale measures (ELMM). As a reminder, 
an equivalent probability measure is called equiv-
alent (local) martingale measure if discounted 
risky asset price under such measure is a (local) 
martingale. We will demonstrate this in case of 
the problem of estimation of risk-neutral price 
interval for an initially incomplete market model.

It is well known that in incomplete markets, 
there are infinitely many ELMMs. Consequently, 
the risk-neutral price is not unique, and it is more 
reasonable to speak about the interval of initial fair 
prices. From the classical martingale approach, it 
is known that this interval could be described as:

inf , supP PT T

P PT T

f f
E E

B B∈ ∈

    
        

 



 

where Tf  —  contingent claim maturing at time 
T  and   —  set of all ELMMs.

We will demonstrate that fair price interval 
boundaries obtained with the help of the method 
of Market Completions coincide with ones from the 
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classical approach. It is straightforward that by “com-
pleting” our ( ),B S  the market we arrive at volatility 
matrix Σ  and force the system (4), or, in this case

,�� . .t t t r P a sΣ θ = µ − −

to have a unique solution θ .
For this completed market model, there should 

exist unique equivalent local martingale measure, 
parametrised with the help of solution 0{ }t t ≥θ . As 
each “completed” volatility matrix corresponds to par-
ticular market completion, there is a one-to-one cor-
respondence between the set of ELMM for the initial 
incomplete model and a set of orthogonal completions.

Lemma 2:
A . Each completion cS  uniquely defines a single 

ELMM in the incomplete market . Moreover, for the 
equivalent orthogonal complete market (obtained 
using the method of Lemma 1), such local mar-
tingale measure will be the same .

B . Each ELMM P  in the incomplete market (
P ∈ ) will be a unique ELMM in the associated com-
pleted market model . Therefore, the set   of ELMMs 
in the incomplete market is equivalent to the set c  
of unique ELMMs corresponding to each completion 
of the market .

This beautiful fact allows us to switch analysis 
from a very abstract class of Equivalent Martin-
gale measures to a class of “completing” assets. 
The latter is much easier to interpret and also 
impose different restrictions such as maximal 
asset volatility or no short selling on the market. 
For now, let us focus on fair price calculation.

Theorem 2: In the incomplete ( )B,S  market, 
assume that r 0=  and let i

tм �and ( )1,...,i i ik
t t tσ = σ σ  

be as defined in the proof of Lemma 1 for i 1, ,n= …
 . Let also W  be a standard k -dimensional Brown-
ian motion, with the first n  elements given by

                         
1

1 k
iji j

t t ti
t j

W W
=

= σ
σ ∑   (9)

for 1, ,i n= … , [ ]0,t T∈ , where ( )2

1

k
iji

t t
j =

σ = σ∑  . 

Then the upper hedging price can be expressed as

( )

( )

*

1 0

2

,� 1, ,

1 0

,

sup exp .
1

2

i

i
t

T

Tk i

ti
tiP

TTk i
i n k

i
ti

C f P

dW

E f W

dt

=

µ = + …
σ

=

=

  µ − − 
σ   =   

   µ−   σ     

∑∫

∑∫
 (10)

Change of Numeraire
In line with the Equivalent Martingale Measure 
approach, it is also worth mentioning the so-
called change of numeraire pricing approach. Its 
connection to the method of market completions 
was described in Guilan (1999). We provide the 
main steps below for informational purposes and 
to complete an overview of the method of Market 
Completions in application to pricing problem.

According to this approach, instead of trying to 
“re-weight” the probability of events by choosing 
some risk-neutral measure, one is searching for a 
special portfolio that could be used as discount-
ing factor instead of the classical bank account. 
However, the choice criteria for such discounting 
portfolio stays the same —  discounted strategy 
prices should be martingales.

More formally, the main goal is to find a port-
folio, which value process tX  is a strictly positive, 
continuous Ito process such that:

( )( )* .t t t t t t tdX X r dt dW u dt= + π σ +

Remark: Here, we will intentionally use nota-
tion u  instead of θ  just to distinguish approaches . 
However, they both represent the same idea of the 
price of the risk .

We want to use this portfolio as numeraire, 
such that risk-premiums with respect to this 
numeraire are constrained to be equal 0. In 
other words, the price process, discounted by a 
mentioned portfolio, will be local martingale 
w. r. t. “objective” probability P .

Theorem 3: Let ( ) ( )1
1T

t t t t tr
−

α = σ σ µ − , i . e ., 
.T

t t tu = σ ⋅α Consider the self-financing strategy 
1( )i n

t t i =π = α  in the risky assets . Denote by tM  the 
present value of this admissible strategy . Then 

tM  satisfies SDE:

         

( )( )
( )2

( )

( )

T
t t t t t t

T
t t t t t

dM M r dt u dW u dt

M r dt u dt u dW

= + + =

= + +      (11)

In the market with tM  as numeraire, investors  are  
 
risk-neutral. M-price process M t

t
t

S
S

M
=  of any asset  

 
tS  is a local martingale. We refer to it as a market 

numeraire.
Proposition 0.1: If m  is a strategy that cor-

responds to tM , then:
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• m  maximises the expected logarithm of terminal wealth
• m  is unique even in an incomplete market
• m  maximises the expected growth rate .
Details about mentioned properties can be found in Bajeux-Besnainou and Portait (1997).
Price of European contingent claim Tf  on the complete market, according to market numeraire 

approach could be found as:

      0 .P T

T

f
V

M

 
=   
    (12)

When one is working with the incomplete market case, it is obvious that there are several risk-neutral 
prices, as we can find several tα  that fit conditions of Theorem 2. Let us now apply the market com-
pletions approach and show that it can estimate option price boundaries on an incomplete market.

Let us consider some market completion cS . Then coefficients of these fictitious assets satisfy

  ( )( ) ( )
1

det det 0�and� , , .t t t t n

t t t t k n

b r I
u a t

a r I

−

−

σ σ −     
σ ρ = ≠ ρ =     ρ ρ −     

  (13)

with
( ) 2

0

, , , . .
T

u a t dt P a sρ < ∞ −∫  

On the completed market, one can define market numeraire as in (11):

( ) ( ) ( ) ( )( )2, , , , ( , , , , )T
t tdM a t M a t r dt u a t dt u a t dWρ = ρ + ρ + ρ 

In the completed market, we have the fair price of CC Tf  calculated similarly to (12):

( ) ( )0 , .
, ,

P TfV a
M a T

 
ρ =  ρ 



Let
( ) ( ) ( ) ( )1 0 2 0inf , , sup ,

a a
V V a V V a

ρ ρ
∈ ∈

ρ = ρ ρ = ρ
 

with ( ) 2

0

: �valued�progressively�measurable�processes�such�that , , �a.s.
T

k na u a t dt−
ρ

  = ρ < ∞ 
  

∫   . 

According to Guilan (1999), the following proposition holds.
Proposition 0.1: ( )1V ρ  and ( )2V ρ  are independent of ρ  .
Proposition 0.1 serves as another proof that it is enough to work with orthogonal completions 

only. Let us pick the orthogonal completion 0Tσρ = , T Iρρ = . For such ρ  and a ρ∈ :

( ) ( ) ( ) ( )
1

1
, .t n T T T

n k n
t k n

rI
u a rI a rI u u

a rI

−
−

− ψ
−

µ −σ   
ρ = = σ σσ µ − + ρ − = + ψ =   −ρ   

 (14)

And this uψ  would be used for the construction of market numeraire. Also, it follows that
0,σψ =

and
k na rI −= ρψ +

It means that the “non-arbitrage” vector uψ  on the completed market can be decomposed into 
u  from incomplete source market and ψ  which is completion dependent. If we define class 
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( ) [ ] 2

0

: �is� valued�progressively�measurable,� 0, 0, , . .�and , . . ,
T

k
t t tK t T a s dt a s

  σ = ψ ψ − σ ψ = ∀ ∈ ψ < ∞ 
  

∫    

then this class will be a parameter space for fictitious completions of the incomplete market. For 
each ( )Kψ ∈ σ  one can find a fair price in a completed market. It implies that option price bound-
aries will be

( )
( )

( ) ( ) ( )
( ) ( )sup or infT T

t t
KK

f f
J t M t M t

M T M Tψ ψψ∈ σψ∈ σ ψ ψ

   
=    

      
  

Remembering results from Guilan (1999), it is possible to show that these price boundaries 
coincide with boundaries from the classical approach:

( ) t t
T T

sup B or inf B
B B

P PT T
t t

PP

f f
V t

∈∈

   
=    

      

 





 


 

In other words, it was also shown that ( )J t  coincides with ( )V t . For more details, we also en-
courage the reader to carefully read Guilan (1999) research.

4 Completions in Context of Markov Factors, Dimension Reductions and Jumps
Connection to Markov Factor Model

Denote Girsanov exponential (6) as 
*

t

dP
Z

dP
= . It is known that this process is a solution for

0, 1t t t tdZ Z dW Z= θ =

and noting that �
i

i t
t i

t

µ
θ =

σ
from non-arbitrage condition t t tΣ θ = µ  ( 0r = ). Then equation (10) can 

be re-written in the following form:

( ) ( ) ( )* , sup .P
T T TC f P Z f W

θ
 = θ 

Moreover, as the first k  elements of the vector θ  are independent of the choice of comple-
tion and only depend on the correlations between existing assets, one can represent vector θ  
as ,t t ta cθ = +  , n

t ta c ∈  where the first one contains elements of tθ  calculated based on existing 
assets only. Namely:

1[ ,0] ,k T
t ta = θ …θ

1[0, ] .k n T
t tc += θ …θ

In this case, the equation for Girsanov exponential can be re-written as

0, 1t t t t t t tdZ Z a dW Z c dW Z= + =

Hence, market completions can be connected to the Markov Factor Model:

( ) ( ) ( )( )t t t t t

t t

dS D S Y dt Y dW

dB rB dt

= µ + σ

=

where tY  is ( )k n−  dimensional factor process, which does not contain any price processes
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( ) ( ) ,t Y t Y t tdY Y dt Y dW= µ + σ

Yµ  and Yσ  are vector functions of appropri-
ate dimensions. Or, more conveniently, to the 
Independent Factor Markov Model in which we 
assume that vector-valued Wiener process W  
could be split as

                            W
S

Y

W

W

 
=   

  (15)

such that SW  is n -dimensional and corre-
sponds to existing assets on the market and 

YW  is ( )k n−  dimensional and corresponds to 
factors. In this setting, Markov Factor Model 
can be written as:

( ) ( ) ( )( )
( ) ( )

,

,

.

S
t t t t t

Y
t Y t Y t t

t t

dS D S Y dt Y dW

dY Y dt Y dW

dB rB dt

= µ + σ

= µ + σ

=

It is possible to show that split (15) is similar 
to what was demonstrated in (9) with existing 
assets on the incomplete market being assigned, 
in fact, to iW  for [ ]1.. , 0,i n t T∈ ∈  which corre-
sponds to SW  and the rest of iW  being assigned 
to YW  as it only depends on ( )k n−  dimensional 
Brownian motion.

Remark: To briefly demonstrate the idea 
of transformation completions notation into 
Markov Factor model one. Assume that we per-
formed the transformation mentioned in (9) 
for the Standard Multidimensional Diffusion 
Market model. In this case, it is easy to see 
that the “completed” volatility matrix can be 
written as:

( )

( ) ( ) ( )

0

0

n n n k n

k n n k n k n

L

D

× × −

− × − × −

 
Σ =    


Where n nL ×  is a lower triangle matrix and 

( ) ( )k n k nD − × −  is a diagonal one . This leads to the 
natural split of vector W into two parts . Without 
loss of generality, one might assume first n elements 
of W to be denoted as S nW ∈  and the last (k-n) 
elements as Y k nW −∈  .

Dimension Reduction
Another natural approach to transform the 
volatility matrix into a proper one would be 

to “trim” it. Or somehow “regroup” underly-
ing Brownian motions in such a way that the 
reduced volatility matrix for them will have 
the proper shape. This idea was introduced by 
Zhang (2007).

For the introduced Standard Multidimen-
sional Diffusion Market Model, dynamics of each 
risky asset price is governed by the sum of inde-
pendent standard Brownian motions

0 0 0
0

1

, 1

, 1,..., .

t t t

k
i i i ij j
t t t t t

j

dS S r dt S

dS S dt dW i n
=

= =

 
= µ + σ = 

 
∑

However, as already mentioned, it is possible 
to write down an equivalent market model which 
would be governed by n  correlated Brownian 
motions instead of k  independent ones (see, 
e. g., Dhaene et al., 2013):

1

k ij
i jt
t ti

tj

dB dW
=

σ
=

σ∑
 

then

( ), 1, , .i i i i i
t t t t tdS S dt dB i n= µ + σ = … 

Obviously, obtained Brownian motions are 
not independent anymore, namely

1 .

i j ij
t t t

k ij lj
t tjil

t i l
t t

dB dB

=

= ρ

σ σ
ρ =

σ ⋅ σ
∑
   

In this model, we have n-dimensional Brown-
ian motion vector with correlated components 

( )1, , n
t t tB B B= … , the relationship between which 

can be described by matrix , 1..{ }il
t t i l n=Ψ = ρ . Notice 

that tΨ  is a non-singular, symmetric, and pos-
itive semi-definite. That implies the existence 
of matrix square-root tA :

, 1.., { }T ij
t t t t t i j nA A A a =Ψ = ⋅ =

Moreover, 1,...�, n
t tW W∃    independent, such 

that:

1 0

� � .
tn

i ij j
t s s

j

B a dW
=

=∑∫ 
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As a result, risky assets can be presented in 
a form

1

, 1, , .
n

i i i i ij j
t t t t t t

j

dS S dt a dW i n
=

 
= µ + σ = … 

 
∑ 

Оt t tAσ = ⋅

Where tΞ  is a diagonal matrix of iσ  and ma-
trix tA  depends on the particular decomposition 
of tΨ . According to Zhang (2007), one obtains 
the following model:

1

, 1, , .
n

i i i ij j
t t t t t

j

dS S dt dW i n
=

 
= µ + σ = … 

 
∑ 



( )1 1 1t t t t t nA r− −θ = ⋅Ξ ⋅ µ −

( ) ( ) ( )12 1 1
T T

t t t n t t t t nr r
−

θ = µ − ⋅ σ σ µ −

Completions for the Models with Jumps
The idea of adding auxiliary assets to the 

market to make it complete is not limited to 
the diffusion market model. There were also 
some developments towards a more general 
geometric Levy model in which asset price is 
governed by jumps

( ) 0) 0,

t t

t t t

t t t

dB rB dt

dS S dt dZ S

Z W X

−

=

= µ + >

= σ +

where tX  is a pure jump process and W  and 
X  are independent variables. It is well known 
that such Levy model is not complete even in a 
one-dimensional case as it includes jumps and 
Brownian motions as two independent sources 
of risk and only one asset to use. So instead 
of introducing the same structure auxiliary as-
sets, authors in Corcuera et al. (2005) enlarge 
the Levy market with the so-called i th-power-
jump assets defined as

( )

0

( ) , 2,i i
t s

s t

X X i
< ≤

= ∆ ≥∑

where s s sX X X −∆ = −  and ( )1
t tX X= . Processes 

( )iX  are again Levy processes. These power-
jump processes jump at the same time as the 
original tZ ; however, jump sizes are the i-th 
power of jumps of the original process. Note, 

that ( ) ( ), 2i i
t tX Z i= ≥ . It is convenient to re-write 

these assets in the compensated form

( ) ( ) ( ) ( ) , 1.i i i i
t t t t iY Z E Z Z m t i = − = − ≥ 

Enlargement of the model is then consisting 
in allowing to trade in assets:

( ) ( ), 2.i irt
t tH e Y i= ≥

With these assets available, it was demon-
strated in Corcuera et al. (2005) that any square-
integrable martingale tM  can be represented 
as follows:

( ) ( )
0

20

t
i i

t s s s s
i

M M h dZ h dY
∞

=

= + + ∑∫ 

where sh  and ( ), 2i
sh i ≥  are predictable pro-

cesses such that

( ) , 0tZ Z r t t= − µ − ≥

and

( )

2

0

2

0

| |

| | .

t

s

t
i

s

E h ds

E h ds

 
< ∞ 

  
 

< ∞ 
  

∫

∫

In other words, for any square-integrable 
contingent claim f  (non-negative, T  measur-
able random variable) we can set up a sequence 
of self-financing portfolios whose final values 
converge in ( )2 *L P . This portfolio will consist 
of a finite number of bonds, stocks and i th-
power-jump assets. It means that f  can be 
replicated, and the market is approximately 
complete.

This interesting result is important to con-
sider within the general idea of market com-
pletion because it offers to search for more 
specific auxiliary assets beyond just structure-
preserving ones discussed before. In the case of 
the Levy market model or another model with 
jumps, it might be more convenient to pick 
specific types of completing assets for each kind 
of risks presented. It is also useful in terms of 
interpretation of the auxiliary assets as power-
jump-assets are by nature instruments that 
give exposure to moments like variance (2nd-
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power-jump asset) or skewedness and kurtosis 
of distribution (3rd and 4th correspondingly). 
Assets of such type might be more conveni-
ent to introduce to real markets to fix their 
incompleteness.

5 Completions in Optimal  
Investment and Partial/Imperfect 

Hedging
Let us now elaborate more on the application 
of the method of Market Completions. In this 
section, we mainly focus on another big part 
of the area of the Mathematical Finance field —  
hedging of contingent claims with the major 
focus on partial hedging.

The idea of introducing fictitious assets to 
complete the market has already demonstrated 
potential on the side of partial hedging. First, it 
is reasonable to look at the classical approaches 
of partial hedging known for complete market 
and demonstrate potential towards implement-
ing market completions method for the incom-
plete case. As it is known, the most up-to-date 
risk measure approved in the Basel III accord 
is CVaR.

Definition 0.1: Value-at-Risk (VaR) measure 
of a loss X  can be defined as

( ) ( )inf :VaR X a P X aα = > ≤ α

Definition 0.2: Conditional Value-at-Risk 
(CVaR) measure of a loss X  can be defined as

( ) ( )
0

1
,CVaR X VaR x dx

α

α α=
α ∫

The problem of CVaR optimal hedging con-
tingent claim H  under budget constraint �x V≤   
therefore can be stated as

    
( )

( ),
, min

�

x
CVaR x

x V

α π

 π →

 ≤ 

  (16)

Inspired by Rockafellar and Urasev, Melnikov 
and Smirnov in Melnikov and Smirnov (2012) 
demonstrated that, introducing the special func-
tion of parameter z ∈

( )
( )

( ) ( )
,

1
min ( )

1 T
x

c z z H z V xπ +

π
 = + − − α



where ( ) ( )H z H z += −  —  modified contingent 
claim H , the problem of CVaR minimisation 
in case of European contingent claim will be 
equivalent to the following one:

( )
( )

( )
,

min min , .
z x

c z CVaR xα∈ π
= π



Consequently, solution of (16) can be decom-
posed into consequent optimisation by z  after 
solving “internal” problem:

               ( ) ( )( )р
TH z V x min

�

E

x V

+

π∈

  − →   
 ≤ 

   (17)

Alternatively, one can approach this prob-
lem from the perspective of optimal split into 
hedged/unhedged proportions of the claim 

( ) ( )fH f H R H= + , where ( )f H  describes the 
optimal hedged proportion of the claim. This 
method was offered by Cong et al. (2014).

Considering European type contingent claim, 
we expect to have a pay-off at maturity time 
T , so the total risk exposure of the investor is 
going to be

 ( ) ( ) ( )( ),rT
f fT X R X e f X= + Π   (18)

where ( )( )f XΠ  is some chosen pricing func-
tional for the hedged part of exposure.

Given the initial budget constraint, the in-
vestor is pursuing the goal of minimising risk 
measure of total exposure (18), given the re-
striction on the initial cost of hedging

( )( )
( )( ) 0

min

. .

f
f

CVaR T X

s t f X

∈Ω



 Π ≤ π

According to Cong et al. (2014), under particu-
lar assumptions, an explicit way of identifying 
the optimal hedged loss function is stated in 
the following theorem.

Theorem 4: Assume that pricing functional is 
linear for any time- t  contingent payout Z . Then, the 
optimal hedged loss function *

fg  is given by

( )* * *( ) ( )fg x x d x u+ += − − −

where ( )* *,d u  satisfies the following equations
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( )

( ) ( )
( )

*

*

0

*

*

*

u
rT

d

e X x dx

X u
X u

X d

−

 > = π



>
> = α⋅

>

∫






and   is a risk-neutral measure .
In both approaches, we arrive at some known 

problem that is well described for the complete 
market. Consequently, completion of the market 
can be helpful as it helps to “parametrise” a 
solution by the set of completing assets. There-
fore, choice of the proper completion by market 
conditions such as partial equilibrium Hu et 
al. (2005), Esscher measure or Minimal Rela-
tive Entropy Measure will be a powerful tool 
for solving CVaR optimisation problems on the 
incomplete market.

To demonstrate sensibility of usage of Method 
of Market Completions for solving stated par-
tial hedging problem (17), we provide existing 
techniques of partial hedging where Method of 
Market Completions has already demonstrated 
great potential or ready to be implemented.

Utility Maximisation
Let us start with the simple case when the goal 
of the investor is to finance a strategy that pro-
vides the greatest terminal wealth utility.

( )
( )

( )( )0 sup .T
x

v x E U V xπ

π∈
 ≡  

In Karatzas et al. (1991), authors have shown 
how to obtain such optimal solution with the 
help of convex duality methods. In the core of 
these methods lies Legendre-Fenchel transform 

( ) ( )( ) ( )( ) ( )
0

max ,
x

U y U x xy U I y yI y
>

≡ − = −  where 

:I + +→   is defined as the continuous decreas-
ing inverse function of ( )U x′  (details in Tou-
chette, n. d.).

The solution to this problem for the complete 
market was given explicitly and can be summa-
rised as the following theorem:

Theorem 5: For a given initial budget 0V 0,>

under the assumption that function

( ) ( )0 0
0 , 0,T T T Ty E Z I y Z y ≡ β ⋅ β ∞ ∀ 

the optimal terminal wealth of a strategy can 
be found as

 ( )( )0 0
0 0 0 �V

T TI V Zξ = β

where 0  is the inverse of the function 0  .

By introducing martingale 0
0 |x

t T T tX E Z ≡ β ξ   
wi th  stochast ic integral  representat ion 
 

0

0

� �
t

T
t s sX V dW= + ϕ∫  with tϕ ∈  and 

2

0

,
T

s dsϕ < ∞∫  

replicating portfolio for optimal terminal capital 
can be obtained as

 ( )11
( ) .T

t t t t
t

X
X

−π ≡ Σ ϕ + θ

Applying the Method of Market Completions 
for the case of incomplete markets, one can in-
troduce k n−  fictitious assets in addition to n  

existing assets on the incomplete market, driv-
en by the same k -dimensional Brownian motion 
as n  real tradeable assets. Then, the problem of 
utility maximisation can be solved in the com-
pleted market with fictitious assets, but there 
are infinitely many ways to introduce those fic-
titious assets.

The relative risk process can then be repre-
sented as �t t tθ ≡ θ + ν with 0T

t tθ ν = . That means 
completions could be parametrised by ν  which 
is square-integrable, t  adapted and d  valued 
process.

Denote also exponential local martingale:

( )2 2

0 0

1
exp � �

2

t t
T

t s s s sZ dW dsν
  ≡ − θ − θ + ν 
  

∫ ∫

and the function
( ) ( )0, .T T T Ty y E Z I y Zν ν

ν
 ∀ > ≡ β β 

Also ( )1K∀ν ∈ Σ  where 

( ) ( ) ( )1 , , 0K K y yνΣ ≡ ν ∈ Σ ∞ ∀ , define

( )( )x
T TI x Z ν

ν νξ ≡ β

where ν  again is the inverse function of ν
An attainable solution will give us value less 

or equal than that. If we find a strategy π  with 
initial capital x , which does not require the 
purchase of the artificial stocks and completion 

( )1t Kλ ∈ Σ  such that
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( )
( ) ( )sup ,x

T
x

E U V E Uπ
λ

π∈
   = ξ   

then, for sure, ( ),π λ  would be optimal. In 
Karatzas et al. (1991) the following theorem 
was proven.

Theorem 6: If we call
Optimality of π



: ( )  ( )T TEU V EU V xπ π 
≤ ∀π ∈  



Financiability of x
λξ :  ( )x∃π ∈  such that 

 x
TV π

λ= ξ
Least Favorability of λ :

( ) ( ) ( )1
x xEU EU Kλ νξ ≤ ξ ∀ν ∈ Σ

Parsimony of λ : ( )1,x
T TE Z x Kν

λ β ξ ≤ ∀ν ∈ Σ 

Then B D C⇔ ⇒  .
Furthermore, if B holds, then the portfolio π  

in B satisfies A.
This theorem provides a powerful instrument 

in verifying if one can build an optimal strategy 
without artificial assets in use, in other words, 
when 0λ =  will satisfy necessary criteria in 
Theorem 1. It was shown to be the case in Karat-
zas et al. (1991) for ( ) ( )lnU X X=  and, under 

some special conditions for ( ) X
U X

δ

=
δ

 where 

1, 0δ < δ ≠ . This edge can further be applied to 

more specific problems of partial hedging. We 
provide one example from Karatzas et al. (1991) 
to demonstrate the application of these condi-
tions to the classical logarithm utility function.

Example 1: Classical example of Utility func-
tion to consider is ( ) ( )U x ln x=  . For this function 
one has:

( ) ( )1 1
,y x

y xν ν= = 

and optimal terminal capital can be calculated as
.x

T T

x

Z
ν νξ =

β

One could check that completion with param-
eter 0λ =  satisfies D.

( )0
0

2

0

exp
1

2

T
T
s s

x
T T T

s

dW

E Z x E x K

ds

ν

  
 − ν − 
   β ξ = ⋅ ≤ ∀ν ∈ Σ   
  − ν  
   

∫

∫  

as the process under expectation is a su-
permartingale. It means that investor would 
not use auxiliary stocks to form an optimal 
portfolio even for hedging purposes.

Efficient Hedging
One of such problems emerges when given an 
amount of initial capital 0v  investor’s goal is 
to find the admissible strategy with terminal 
wealth TV  such that

           
        

( )(
*

*
0

[ ) min

sup

T

T
P

U H V

V v

+

∈

 − = 
 ≤  






  (19)

Föllmer and Leukert demonstrated in Föllmer 
and Leukert (2000) that such problem can also be 
solved with the help of convex duality methods, 
similar to utility maximisation, as one can define 
state-dependent utility function

( ) ( )( ) ( )( ), ( ) .u x U H U H x +ω = ω − ω −

And then re-write (19) in the following form

( )
*

*
0

, max

sup

T

T
P

u V

V v
∈

  ω = 
 ≤  






which can be solved explicitly on the complete 
market.

For each [ ]*z E H≤  there is a unique terminal 
wealth Z  such that

( ) ( ) [ ]{ }*,. sup ,. 0 � ,� � .E U Z E U Z Z H E Z z   = ≤ ≤ ≤  


It takes the form

( ) ( )( ) ( )0� � , �TZ I y z Z H= ω ω ∧ ω

where ( )y z  is the solution of

( ) ( )( ) ( )* 0 ,TE I y z Z H z ω ω ∧ ω = 

Obviously, such a reduction provides strong 
evidence that one can move on in the direc-
tion of Theorem 1 to elaborate on mentioned 
criteria and generalise them for this category 
of problems.
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Quantile Hedging
An important case of efficient hedging is 
when we focus on minimising the expected 
size of the shortfall, or ( )U X X= . This par-
ticular case is extremely useful for solving 
(17) to find the solution of CVaR optimisation 
problem (16).

Apart from applying similar convex duality 
methods Spivak and Cvitanic (1999), one can 
use an alternative approach, which involves the 
famous Neyman-Pearson lemma. According to 
Föllmer and Leukert (1999), it is enough to solve 
the equivalent problem

                 

[ ]
* *0

*

max

,��

dQ

V
dQ P P

E H

 ϕ →



ϕ ≤ ∀ ∈


∫

∫


  (20)

where

[ ] [ ]
*

* *
, .

dQ H dQ H

dP E H dP E H
= =

The solution to problems of such a type was 
demonstrated in Föllmer and Leukert (1999) and 
can be found as a perfect hedge for a modified 
claim H H= ϕ

  where

* *

� � dP dP
a a

dP dP

I I
> =

ϕ = + γ
 

 

*

*inf 0 | dP
a

dP

a a E HI V
>

  
= ≥ ≤      



  

                          
*

*

*

*

dP
a

dP

dP
a

dP

V E HI

E HI

>

=

 
−  

  γ =
 
 
  







   (21)

It is easy to notice that the solution is based 
on finding maximal successful hedging set, which  
 
can be represented as 

*

dP
Const H

dP

 > × 
 

, where 

H  is some claim. With the reasonable assump-
tion that claim H  depends on some existing 
asset i

TS  and using the following representation 
on the complete market

( )1/2
*

1
exp

2

i
T i iT

T T
T

dP
W T S

dP

ϕ = θ − θ = × Λ 
 



where 
2

i
i rµ −ϕ =

θ 

, successful hedging set can be 

found in the form of

( ) ( )
1

ii i i
T TS Const H Sϕ

  × Λ > × 
  

which, in the case of one dimension, coincides 
with the solution described in Melnikov et al. 
(2001).

In an incomplete market case, we again add 
some auxiliary assets into consideration. As was 
demonstrated above, one can develop innova-
tive Brownian Motion, under which, last ( )k n−  
coefficients of each row iσ  for existing assets in 
the “completed” volatility matrix will be equal 0. 
Then, using representation (6), if claim H  still 
depends on existing assets only, it is possible 
to show that

( ){ }1 1
*

T
asset completion

T

dP
a H Z Z a H asset

dP
− −  > ⋅ = ⋅ > ⋅ 

  

Consequently, it is reasonable to develop a 
general theory of applying Method of Market 
Completions to the construction of a success-
ful hedging set. It helps reduce the Quantile 
Hedging problem to operations with existing 
assets only.

6 Conclusion
In this paper Method of Market Completions is 
introduced as a dual approach for operating on 
incomplete markets. It was demonstrated that 
in the case of pricing problem, this approach 
leads to the same solution as classical ones. As 
the method of market completions offers an al-
ternative way of working with standard prob-
lems of mathematical finance in incomplete 
markets, it was shown how to reduce such 
problems to the known version in the complete 
market.

In line with it, alternative ways of handling 
market incompleteness were observed with their 
connection to the method of market comple-
tions and possible future developments and 
improvements of the presented method. Further 
enhancements of this method consist in finding 
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a way for reverse-engineering parameters of 
the completion required utilising BSDE, partial 
equilibrium market condition or using another 
asset class like bonds or insurance contracts. On 

the other hand, it will also be beneficial to find 
a way of choosing the most suitable completion 
according to market conditions and investors 
goals.
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ABSTRACT
The authors propose a methodology for assessing the risk associated with subjective factors that may 
affect the achievement of the final goals of business projects, including ensuring information security. 
Such factors may include the level of salary, the level of professionalism, and others. At the same 
time, we propose carrying out the risk assessment by using the fuzzy logic method, which allows us 
to determine the dependence of the risk on various parameters under conditions of their uncertainty. 
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АННОТАЦИЯ
Авторами предложена методика оценки риска, связанного с субъективными факторами, которые 
могут оказывать влияние на достижение конечных целей бизнес-проектов, включая обеспечение 
информационной безопасности. В качестве таких факторов могут выступать: уровень зарплаты, уро-
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1 Introduction
In current conditions, any organisation (enterprise) 
starting a new business project must determine the 
purpose (aim) of this project, the necessary funds 
and resources for its implementation, and possible 
risks.

The document titled GOST R ISO 31000–2019 
“Risk Management. Principles and guidelines” de-
fines risk as: “the consequence of the influence of 
uncertainty on the achievement of aims”.

This influence can lead to a deviation in achiev-
ing the aim. The deviation can be expressed as a 
failure of deadlines, an increase in costs, or even a 
complete failure of the project and, as a result —  the 
loss of business.

The longer the project’s duration, the more likely 
it is that its implementation’s external and internal 
conditions will change. It means that long-term 
projects are a priori riskier than short-term ones.

Currently, no solid business project is complete 
without the use of information technology. And these 
technologies both help to speed up all processes and 
bring with them new threats and risks.

According to the InfoWatch group of companies, 
for the first nine months of 2020, 7.4 per cent fewer 
leaks were registered in the world than in the same 
period last year [InfoWatch, 2020]. On the contrary, in 
Russia, the number of leaks increased by 5.6 per cent 
over the same period. From January till September 
2020, 9.93 billion records of personal data and pay-
ment information were leaked worldwide, of which 
96.5 million were in Russia. The leaks distribution 
by data type we present in Table 1.

During the same period, 52.6 per cent of leaks 
worldwide occurred due to external influences. At 
the same time, there was only 21 per cent of such 
leaks in Russia, and more than 79 per cent of leaks 
occurred due to internal violations. If a little more 

than half of the violations of an internal nature are 
recognised as intentional in the world, then in Russia, 
there are more than 3/4 of such violations. In Russia, 
the share of leaks caused by employees is twice as 
high as in the world —  more than 72 per cent. The 
leaks distribution by culprit we present in Table 2.

More than 40 per cent of registered leaks in Russia 
are in the high-tech and financial sectors —  21.9 per 
cent and 18.9 per cent of cases, respectively. In the 
world, the high —  tech sector is in the first place with 
a share of 19.4 per cent, and healthcare is in second 
place —  16.4 per cent.

In Russia, the share of leaks associated with fraud-
ulent activities is three times higher, 10.3 per cent 
versus 3.3 per cent. It means that violators, primar-
ily internal ones, still have many loopholes to take 
advantage of information stolen from the corporate 
circuit for direct profit.

The main channel of leaks remains the Network 
(Browsers and the Cloud).

Also, in Russia, the share of leaks through paper 
documentation remains relatively high. Despite the 
rapid development of electronic document manage-
ment in recent years, a significant part of the data is 
still stored and transmitted on paper.

The statistic shows that in 2019 internal leaks of 
information constituting a trade (commercial) secret 
occupy firmly the second place after the undisputed 
leader —  internal leaks of personal data: 75 and 12 
per cent, respectively.

At the same time, it should be borne in mind that 
leaks of information constituting a commercial se-
cret are intentional in 80 per cent of cases. Leaks of 
personal data, on the contrary, are mostly accidental.

In the case of user data, more than half of the 
leaks are accidental. In the case of other types of 
data, most of the leaks occur due to deliberate ac-
tions. Intentional leaks count for commercial secrets 

вень профессионализма и другие. При этом оценку риска мы предлагаем проводить с помощью 
метода нечеткой логики, что позволяет определять зависимость риска от различных параметров 
в условиях их неопределенности. По мнению авторов, предлагаемая методика поможет избежать 
некоторых неправильных управленческих решений при формировании авторских (рабочих) кол-
лективов, которые могли бы привести к негативным последствиям при дальнейшей реализации 
бизнес-проекта. Эти негативные последствия могут выражаться в затягивании сроков реализации, 
удорожании самого проекта или даже потере бизнеса из-за утечки критически важной информа-
ции и кадров. Представленная авторами методика позволяет повысить эффективность проведения 
кадровой политики не только в отдельных организациях, но и в корпорациях и объединениях, име-
ющих сложные сетевые структуры.
Ключевые слова: бизнес-проект; квалифицированная утечка; информационная безопасность; внешний 
и внутренний нарушитель; человеческий фактор; нечеткая логика; управление риском
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(80 per cent), production secrets (88 per cent), and 
state secrets (85 per cent).

At the same time, internal intentional leaks have 
high latency. An internal violator “targeting” the theft 
of the employer’s trade secrets is usually well aware 
of where the information of interest is stored, how 
and who controls the data transmission channels. 
As a result, the leak of commercial secrets is either 
not recorded at all or is discovered by the affected 
company after the fact.

Internal leaks have powerful destructive potential. 
The consequences of mistakes or malicious actions 
of personnel can manifest themselves in property or 
reputational losses and the suspension or liquidation 
of the business.

The factors influencing the actions of the internal 
violator are usually subjective and have a corrup-
tion component at their core [Kozlov & Noga, 2019]. 
When assessing the risk of implementing a business 
project, it is necessary to consider these factors.

2 Subjective Risk Factors
What motivates the internal violator? The main 
reasons are greed and negligence. The self-serving 
and psychological motives for violations are al-
most the same as those of corruption [Vannovskaya, 
2013]:

• The employee’s opinion that his work is unde-
servedly undervalued

• A significant difference in different categories 
of employee’s wage

• High staff turnover, the presence of “tempo-
rary workers”, including among managers

• Lack of individual employee interest in 
achieving the project aim, personal dissatisfaction

• Low qualification of the employee, his inabil-
ity to work on equal terms

• Company tolerance to minor violations
• The presence of double standards in the or-

ganisation when a certain category of employees 
(managers) is allowed to violate the established 

rules. The employee believes that this is cheating 
him, and he also has the right to cheat

• Excessive bureaucracy and insufficient con-
trol, when it is easier to circumvent the rules than 
to comply with them.

Risk Parameters
Consider the above factors as some parameters 
that affect the value of risk in the organisation. The 
level of material satisfaction consists of wage and 
household comfort. Several parameters can define 
this level:

• The value of the deviation of the average 
wage in the team from the average salary in the in-
dustry (region)

• The ratio of the average wage in the team to 
the average wage in the industry

• The spread of employees’ wages (how much 
they differ in the team), its dispersion.

The authors propose representing wage dispersion 
as the standard deviation from the average value, 
well described by the variance of a discrete random 
variable —  wage:
                 
                   2( ) ( ( ))D z M z M z= − ,  (1)

where D (z) is the wage dispersion (the average of 
the square of the deviation of the wage from the 
average level), z —  is a random variable —  the em-
ployee’s wage, M (z) —  is the average wage in the 
team.

According to the author’s opinion, another im-
portant parameter that affects the organisation’s risk 
is the professional level of employees. This level can 
be represented as the ratio of the average employees 
work experience in this area (in this direction) to the 
average life cycle of products (products) produced 
by this company.

Under the product life cycle, we will understand 
the time required for its development, testing, or-
ganisation of production, production cycle, the period 

Table 1
Distribution of leaks by data type: Russia-World, January-September 2020

Type of the data In Russia (%) In the world (%)

Personal information 85.9 80.1

Payment (financial) information 2.0 5.6

State secret 6.7 4.7

Business secrets, know —  how 5.4 9.6

Source: The authors.
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of implementation and operation, during which its 
technical support is carried out.

Thus, the professional level can be represented 
in the following form:

           1

n

i
i

S

P
nG
==
∑

,   (2)

where P —  is the level of professionalism, Si —  is the 
employee’s work experience in this field, n is the 
number of employees in the team, and G —  is the 
average life cycle of the products produced.

At the same time, it is worth noting that the more 
technologically complex products usually have longer 
life cycles. So, for example, it can take ten or more 
years to develop an entirely new computer proces-
sor based on new architectural principles or create 
a new aircraft. And to launch it into production with 
the solution of numerous organisational issues may 
take as many more years.

Also, the following parameters can be attributed 
to subjective risk factors:

• The level of the employee’s interest in the re-
sults of the work, defined as the time of work on 
this project (usually, if the employee is interested 
in the result, then he tries, all other things being 
equal, to stay in the team until the final result is 
obtained)

• The level of comfort in the team can be deter-
mined by the parameter —  the lifetime of the sta-
ble core of the team (the stable core of the team). If 
it were not comfortable to work in this team, then 
employees would try to leave it, and there would be 
a significant turnover of personnel

• The level of commitment to the company’s 
goals is a parameter similar to the previous one, 
only, in this case, it refers to a large company and 

is instead an individual parameter for a particular 
employee, i. e., the longer the employee’s work ex-
perience in this company, the higher the level of 
commitment

• The level of compliance of the vector of deci-
sions made with the company’s goals and their im-
pact on other team members. This parameter rath-
er refers to top managers who make decisions or 
influence the adoption of certain managerial deci-
sions. For example, a company produces aeroplanes 
or cars but has faced some financial issues. The fi-
nancial manager, first of all, should reduce expens-
es. But, if at the same time to reduce the division of 
designers —  designers, so in the future will not be 
created new aircraft or cars and the company will 
not be competitive, and may even lose business.

The human (subjective) factor is essential when 
assessing the risk for any enterprise and high-tech 
companies working with new technologies —  espe-
cially. Underestimating this can negatively affect the 
performance of the enterprise (company).

Therefore, it is necessary to maintain a decent 
wage level, strive to maintain and, if possible, create 
a healthy climate in the team based on the profes-
sionalism of its employees and provide opportunities 
for career and material growth to reduce the risk 
associated with subjective factors.

But how to assess this risk depend on the listed 
parameters, which is not clearly expressed?

In this case, the authors suggest using the fuzzy 
logic method for its evaluation and using the MAT-
LAB Fuzzy Logic Toolbox package for its implemen-
tation [Matlab, 2019].

3 Risk Assessment
In assessing the risk according to the proposed 
methodology, it is possible to build the depend-

Table 2
Distribution of leaks by violators: Russia —  World, January —  September 2020

Leak’s violator In Russia (%) In the world (%)

Head manager 5.0 2.6

System Administrators 0.0 0.1

Unprivileged employees 72.1 36.5

Former employees 2.0 0.9

Contractors 1.0 2.2

External attackers 29.1 57.7

Source: The authors.
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ence of the risk on all of the above parameters and 
some other specific ones to specific enterprises. But 
in this case, the description and calculation will be 
pretty time-consuming. A variant of the risk as-
sessment with dependence on five parameters is 
given in the paper [Kozlov & Noga, 2020].

For simplicity and clarity, we will evaluate the 
dependence of risk on three parameters, which, ac-
cording to the authors, are one of the main param-
eters that influence subjective risk factors.

In the proposed example, these parameters will 
be:

• The wage level U(z) —  the ratio of the average 
salary in the team M (z) to the average wage in the 
industry M

• The wage dispersion level in the team D(z)
• The professional level of the employees P.
In this case, the risk R can be represented as a 

function of these parameters.

                      R = R(U(z), D(z), P)  (3)

The fuzzy logic method involves working with 
linguistic variables. The correspondence of linguistic 
variables to the above parameters we show in Tables 

3–5. We will consider all variables normalised with 
values in the range from 0 to 1.

If the company’s wage level is significantly lower 
than the average in the industry, then the company 
will inevitably face problems with recruiting qualified 
specialists. The exception may be cases of temporary 
difficulties with the prospect of overcoming them 
in the future.

Significant dispersion of the employees’ wage in 
the team can also cause many negative cases, such as 
envy and betrayal of the company’s interests based 
on “underestimating” the personal employee’s con-
tribution.

Moral and material dissatisfaction can push an 
employee (employees) to find a new job with better 
working conditions and simply to sell the technical 
and technological secrets of the company.

The professional level also has a significant im-
pact on the risk assessment. The lower this level, the 
more likely it is to make mistakes that can lead to 
the failure of the project deadlines, its price rise, or 
even to the inability to achieve the aim.

In addition, less professional employees are more 
prone to overestimating their importance and some-
times do not listen to the opinions of more experi-

Table 3
Wage (salary) level

N Wage level Possible actions of employees
Relation to the 

average wage in the 
sector

The boundaries of 
the term “Wage 

level”

1 Low Employees ‘ desire to find another 
job or to sell secrets 0.1–0.75 0.1–0.4

2 Middle Stable job, but getting a better offer, 
leave your job 0.75–1.50 0.4–0.6

3 High The desire to maintain this level More 1.50 0.6–1.0

Source: The authors.

Table 4
Wage dispersion level

N Wage dispersion 
level Possible actions of employees The boundaries of the term 

“Wage dispersion level”

1 High Employees’ desire to find another job or to sell 
secrets 0.7–1.0

2 Middle Stable job, but getting a better offer, leave your 
job 0.3–0.8

3 Low The desire to maintain this level 0.1–0.4

Source: The authors.
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enced employees. And if they are also top managers, 
head of the team or company divisions with the vote 
right, then the consequences can be very harmful. 
The linguistic variable with the corresponding pro-
fessional level we show in Table 5.

Finally, an approximate risk estimation algorithm 
based on the provisions of fuzzy logic and fuzzy set 
theory, considering the uncertainties that arise in 
any organisation, can be implemented using the 
as mentioned above MATLAB Fuzzy Logic Toolbox 
package. When using the production rules of fuzzy 
logic, we reproduce the output mechanism taking 
into account the three input variables. Such variables 
for assessing the risk associated with subjective (hu-
man) factors in our example, as already mentioned 
above, are:

• wage level
• wage dispersion level
• employees professional level.
Each of the listed input variables, as indicated 

above, is evaluated on its own scale. Next, these input 
variables are passed to the Fuzzy Logic Toolbox, and 
the output is the value of the output variable —  risk.

As a visual example, consider a simplified risk 
calculation in the Fuzzy Logic Toolbox with three 
input variables: wage level —  xZ, wage dispersion 
level —  xD, and professional level —  xP.

There is the variable risk —  yR (Risk). That is, now 
equation (3) has the following form

                   yR = R (xZ  , xD  , xP  ).  (4)

We apply the Mamdani model and assume that 
the membership functions of the three variables 
have a trapezoidal form. The risk membership 
function has the shape of a Gaussian curve. The 
ranges of changes in terms specified in Tables 
3–5, respectively, are used to evaluate the input 
variables. For the output variable yR, we use three 
terms with the measurement range specified in 
Table 6.

Further, to form a fuzzy knowledge base, we 
introduce production rules, partially presented 
in Table 7.

A graphical representation of the Mamdani 
knowledge base in the Fuzzy Logic Toolbox rules 
editor we show in Figure 1.

After defuzzification, you can get a specific 
value of the output risk parameter for specific 
values of the input variables and compare it with 
the acceptable value. The presented package al-
lows you to visualise the dependence of the risk 
on the input parameters (4).

According to the given input parameters, it is 
possible to build three three-dimensional graphs. 
At the same time, on each of them, you can see the 
dependence of the risk for two parameters with 
fixed values of the third. To determine the opti-
mal values of the parameters with an acceptable 

Table 5
Professional level

N Professional 
level Possible consequences The boundaries of the term 

“Professional level”

1 Low Possible adoption of technically incorrect decisions 0.1–0.3

2 Middle increasing the project implementation time, reducing 
its quality due to insufficient experience 0.3–0.8

3 High There may be minor deviations in the implementation 
time More 0.8

Source: The authors.

Table 6
Output variable Risk (yR)

Risk level The boundaries of the term “Risk level”

1 Insignificant 0.0–0.20

2 Acceptable 0.16–0.50

3 High 0.45–1.00

Source: The authors.
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risk value, you need to do some work, varying the 
values of the input parameters. Naturally, this is 
only possible within the limits of the restrictions 
imposed on these values, which are available to 
implement real projects.

Figure 2 shows a visualisation of the risk de-
pendence at the wage dispersion level and the 
wage level. This relationship indicates that the 
smaller the wage dispersion level in the team and 
the higher the overall wage level, the lower risks 
associated with the manifestation of subjective 
(human) factors.

You can also visualise the risk dependence at 
the professional level and the wage level (Figure 
3), the professional level and the wage dispersion 
level (Figure 4). In this example, to simplify the 

presentation of the basic principles of the pro-
posed method for assessing the dependence of 
risk on subjective factors, each linguistic variable 
corresponds to only three intervals of values. In 
fact, you may need more of them to get more ac-
curate results. And there may be more variables 
themselves. For example, to assess the level of 
wage, it may be necessary to compare it with the 
level of living in a given country and the wage 
level of a specialist in a given professional field 
in other countries.

It is necessary to understand that the further 
use of new values and new variables increases the 
number of production rules and complicates their 
writing. It, in turn, may lead to the need to attract 
additional experts.

Table 7
Fuzzy knowledge base, production rules

N Wage level Wage dispersion level Professional level Risk level

1 Low High Low High

2 Low High Middle High

3 Low High High High

4 Low Middle Low High

… … … … …

24 High Middle High Insignificant

25 High Low Low Acceptable

26 High Low Middle Insignificant

27 High Low High Insignificant

Source: The authors.

 
Figure 1. Mamdani’s fuzzy knowledge base in the Rules Editor.

Source: The authors.
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Figure 2. Visualisation of the risk dependence at the wage dispersion level (xd) and the wage level (xZ)

Source: The authors.

Figure 3. Visualisation of the risk dependence at the professional level (xP) and the wage level (xZ).

Source: The authors.

Figure 4. Visualisation of the risk dependence at the professional level (xP) and the wage dispersion level (xd).

Source: The authors.
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4 Conclusion
The proposed method allows us to assess the de-
pendence of risk on subjective factors that are 
difficult to describe mathematically strictly. The 
article provides an example of evaluating the 
dependence of risk at the wage level, the wage 
dispersion (spread) level and the professional 
employees level. This method allows us to as-
sess the dependence of risk on other subjective 
parameters, both those given in this paper and 
those that may be specific only for specific enter-
prises or company.

Using the above methodology, in conditions of 
great uncertainty and non-obvious mutual influence 
of parameters at different stages of the life cycle of 
various business projects, it becomes possible:

1. Determine the impact of various subjective risk 
factors on the level of a particular business project 
implementing risk

2. Assess the level of risk, both at the moment and 
at various stages of the business project life cycle

3. Optimise the personnel policy of the enterprise 
(organisation), which reduces the risk of leakage of 
high-tech (know-how) information, as well as the 
leakage of “brains”, to stabilise the staff

4. Develop recommendations for the formation of 
a healthy atmosphere in the team, which will allow 
you to optimally solve the tasks set to achieve the 
aims of the business projects

5. Avoid erroneous management decisions, es-
pecially those related to the company or staff “op-
timisation”.

The proposed methodology can be used in in-
dividual enterprise and organisations with a com-
plex network structure. For example, there may be 
a company with a large number of branches. If so, it 
is necessary to compare the wage level not within 
the team but between branches.
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