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ABSTRACT

This study aimed to examine an uncertain stochastic optimal control problem premised on an uncertain stochastic
process. The proposed approach is used to solve an optimal portfolio selection problem. This paper’s research is
relevant because it outlines the procedure for solving optimal control problems in uncertain random environments.
We implement Bellman’s principle of optimality method in dynamic programming to derive the principle of optimality.
Then the resulting Hamilton-Jacobi-Bellman equation (the equation of optimality in uncertain stochastic optimal
control) is used to solve a proposed portfolio selection problem. The results of this study show that the dynamic
programming principle for optimal control of uncertain stochastic differential equations can be applied in optimal
portfolio selection.Also, the study results indicate that the optimal fraction of investment is independent of wealth.
The main conclusion of this study is that, in Ito-Liu financial markets, the dynamic programming principle for optimal
control of uncertain stochastic differential equations can be applied in solving the optimal portfolio selection problem.
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OPUTUHANBbHAA CTATbA

MpuHUMN AMHaMKUUYECKOro NporpaMMmUpOBaHUS

ANS ONTUMAJIbHOIO YNpaB/eHUs HeonpeaeeHHbIMU
cnyvyarHbiMu auddepeHumanbHbIMU

YPaBHEHUSIMU U €r0 NPUMEHEHUE K ONTUMAZIbBHOMY
Bbl6OpYy noprdens

Ibx. Yupuma?, @.P. Matenpa®, 3. Yukoazac, M. Cubanpa®
2YHuBepcuTeT Manasu, 3omba, Manasu;

®dYuusepcuteT KBasyny-Hatan, lyp6aH, KOxxHas Adpuka;
¢YHmBepcuteT botcaHbl, [abopoHe, boTcBaHa

AHHOTALUMNA
Llenbto gaHHOro MccneaoBaHuns 66110 U3yyeHne NoBeaeHNs GUHAHCOBbIX PbIHKOB Kak HeompeaeneHHoM cToxa-
CTUYECKOW 334a4M ONTUMAJIbHOrO YrpaB/ieHMs, OCHOBAHHOM Ha HeonpeneleHHOM CTOXacTMYeCKOM npoLiecce.
lMpennaraeMblii NOAXOA MCMOMb3YeTCs NS pelleHns 3a4a4n onTuManbHoro Bbibopa noptdens. Mccnenosaxue,
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npoBefeHHOe B aHHOM paboTe, IBNSeTCs akTyanbHbIM, MOCKOMIbKY OHO OMUCbIBAET NpoLeaypy peleHuns 3agay
ONTUMANbHOIO YyNpaB/ieHUs B HEONpPeAeNeHHbIX C1y4alHbIX cpenax. ABTOpbl peanusyoT MeToa, NpuHLmMna on-
TMManbHoCTM bennMaHa B AMHAMMYECKOM NPOrpaMMMpPOBAHMM 411 BbIBOAA NMPUHLUMMIA ONTUMAbHOCTU. 3aTeM
nony4yeHHoe ypaBHeHWe [amMunbToHa -AKkobu-bennmaHa (ypaBHeHWe ONTMManbHOCTM B HEOMNPEAEeNeHHOM CTO-
XacCTUYeCKOM ONTUMANbHOM YMpPaBAEHMM) UCMONb3YETCS ANS PELeHns NPeaoxkeHHOoW 3aaa4m Beibopa nopT-
dens. PesynbraTbl [aHHOIO MCCEA0BAHMS MOKA3bIBAIOT, YTO MPUHLMM AMHAMMUYECKOTO NPOrpaMMUPOBaHNS OIS
ONTUMANbHOIO YNPaBAEHUS HEOMpPEeAENEeHHbIMU CTOXacTUYeckKuMn gubdepeHumnanbHbIMU YpaBHEHUSIMU MOXET
ObITb NPYMEHEH NpW ONTUMaNnbHOM Bbibope nopTdens. Kpome Toro, pe3ynbraTbl MCCNEL0BAHUS YKA3bIBAKOT HA
TO, YTO OMTUMANbHAS AONS MHBECTULMI HE 3aBUCUT OT cOCTOsHMS. OCHOBHOM BbIBOA, AAHHOTO UCCNEA0BaHMA
3aKJ104AETCs B TOM, 4TO Ha PUHAHCOBBIX pbiHKax UTo-JTo npuHLMN AMHAMUYECKOro NporpaMMMpoBaHKS Ans
ONTUMANbHOIO YNpaBAEHUS HeoNpeaeaeHHbIMU CTOXacTuyeckumMmn guddepeHunanbHbIMM YypaBHEHUSIMU MOXET
ObITb MPMMEHEH NPU peLleHnn 3a4a4n ONTUManbHOro Bbibopa noprtdens.

Knrouesbie cnoea: cnyqyatHOCTb; HEONPeAeNeHHOCTb; HeonpeaeneHHble clyyYanHble anddepeHumanbHble ypas-
HEHUS; AMHaMMYyeckoe NporpaMMMpoOBaHNE; ONTUMaNbHOE yrpaBfeHue; Bbibop noptdens; ypaBHeHMe ONTU-
ManbHOCTU; PUHAHCOBbIE PbIHKK MTO-JT10
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Introduction

Generic uncertainty experienced in natural and
physical processes manifests in different forms [1].
In this modern world, the primary forms of generic
uncertainty are fuzziness, randomness, uncertainty,
and the interaction effects between any of these
three [1, 2]. Randomness describes the state of a
system that is entirely unknown due to a lack of
information [3]. Similarly, [4] propounded that ran-
domness is an objective indeterminacy. Random-
ness is modelled by probability theory, which is
defined as a branch of pure mathematics that deals
with dynamic random phenomena [5, 6]. Concep-
tually, probability theory is implemented when
the sample size is big enough to approximate the
probability distribution from existing frequency
[6]. Probability theory is the bedrock of stochastic
finance theory. Fuzziness is the vagueness sur-
rounding the description of the meaning of events,
phenomena, and statements themselves [3]. Fuzzy
set theory models fuzziness [7]. The application of
fuzzy theory in finance theory led to the emergence
of fuzzy finance theory.

In practice, some knowledge or information is
typically shown by human semantic terms like “stock
price is about $ 28" [2, 5, 8]. About $ 28 might mean
any number close to $ 28, which is imprecise. Exist-
ing literature has indicated that these “unknown
constants” and “unsharp concepts” behave neither
like fuzziness nor randomness [2]. This phenomenon
is called uncertainty or Liu’s uncertainty [5, 8], and
[4] postulated that uncertainty is subjective indeter-
minacy. The lack of precise or sufficient knowledge

about realities identifies uncertainty. It should be
noted that uncertainty is different from randomness
and fuzziness.

To model uncertainty, [8] introduced uncertainty
theory. Uncertainty theory is an axiomatic branch
of mathematics that analyzes uncertain phenomena.
Uncertainty theory is applied when the sample size is
missing or too small to approximate the probability
distribution. Domain specialists are asked to examine
their belief degrees of every event happening. People
typically overvalue odd events. Hence, belief degrees
can have a greater variance than the real frequency.
In this instance, implementing probability theory re-
sults in counter-intuitive results. Uncertainty theory
is the foundation of uncertain finance theory. For
more information concerning Liu’s uncertainty, the
reader is referred to other authors [5, 8].

In probability theory, stochastic processes (e.g.,
a Brownian motion introduced by Robert Brown in
1827) were designed to analyze the random phe-
nomena dynamics that change with time. Numerous
differential equations are powered by a Brownian
motion in probability theory. These differential equa-
tions are called stochastic differential equations.
In uncertainty theory, uncertain processes (e.g., a
canonical Liu process [9]) were introduced to analyze
the uncertain phenomena and dynamics that change
with time. Numerous differential equations are pow-
ered by a canonical Liu process in uncertainty theory.
These differential equations are called uncertain
differential equations.

Randomness and uncertainty often appear simul-
taneously in a dynamic system [4]. This indicates that
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more than probability theory or uncertainty theory is

needed to deal with systems that exhibit randomness

and uncertainty [4, 6]. Chance theory [10] was intro-
duced to deal with sophisticated systems exhibiting
uncertainty and randomness. Chance theory is a

mathematical methodology comprising uncertainty
theory and probability theory [4]. It is defined as a

branch of pure mathematics concerned with the

analysis of uncertain random phenomena [4, 6].

To analyze the uncertain random phenomena dy-
namics that change with time in chance theory, [11]
introduced an uncertain random process. A myriad of
differential equations are powered by an uncertain
random process in chance theory. These differential
equations are known as uncertain random differential
equations and are powered by both a canonical Liu
process and a Brownian motion. Uncertain random
differential equations describe complex mathemati-
cal systems that exhibit randomness and uncertainty
[2]. When randomness and uncertainty concurrently
appear in dynamical systems, chance theory is an
efficient framework to deal with such scenarios.

Since the 1950s, the optimal control theory has
been a vital division of modern control theory [4].
These authors [4] further articulated that analyz-
ing optimal control problems is a topic of interest
to many researchers, and the analysis has practical
connotations. Optimal control problems are usually
categorized into two, i.e., optimal control problems
associated with adequate information and optimal
control problems associated with inadequate infor-
mation [4]. The parameters of the systems are known,
and the dynamics of the systems are described by
deterministic differential equations when consid-
ering the optimal control problems with complete
information [4]. On the other hand, [4] postulated
that systems’ outcomes or conditions could not be
precisely described due to numerous indeterminate
factors in the systems’ dynamics when considering
optimal control problems with inadequate informa-
tion [4].

Optimal control is one of the areas in mathematics
where generic uncertainty issues must be handled
cautiously. Applying probability theory in optimal
control theory gave birth to stochastic optimal con-
trol theory. On the other hand, the application of
uncertainty theory in optimal control theory led to
the emergence of uncertain optimal control theory.
Uncertain optimal control theory and stochastic
optimal control theory can be used to address op-
timal control problems with inadequate informa-

tion. Basically, uncertain optimal control theory and
stochastic optimal control theory are used to solve
control problems with subjective indeterminacy and
objective indeterminacy, respectively. Stochastic dif-
ferential equations are crucial in stochastic optimal
control theory [12—-16]. The application of stochastic
optimal control in finance was initiated by [17]. For
more information concerning stochastic optimal
control, the reader is referred to the works of, but not
limited to, [17-23]. Uncertain differential equations
are vital in uncertain optimal control theory [24-28].
For more expositions on uncertain optimal control,
the reader is referred to, among other sources, [29, 30].

When randomness and uncertainty concurrently
appear in dynamic systems, chance theory is an ef-
ficient framework to deal with optimal control prob-
lems. In the existing literature, there are limited
studies that examine uncertain random optimal
control problems under the chance theory framework
[4, 31]. Premised on chance theory, [32] presented
the optimal control model for a multistage uncer-
tain random system. As alluded to earlier, uncertain
stochastic differential equations play a critical role
in chance theory and, interestingly, in uncertain
random markets. [30, 33, 34] are some authors who
have examined the dynamic principle for optimal
control of uncertain stochastic differential equations
in uncertain random markets.

This study examines an uncertain stochastic op-
timal control problem premised on the notion of
uncertain stochastic process. We implement the Bell-
man’s principle of optimality in dynamic program-
ming to derive the principle of optimality, and then
the resulting Hamilton-Jacobi-Bellman equation
(the equation of optimality in uncertain stochastic
optimal control) is used to solve a proposed port-
folio selection problem. Previously, [17] examined
a portfolio selection problem using stochastic dif-
ferential equations, while [24] addressed a portfolio
selection problem by applying uncertain differential
equations. Therefore, this proposed method is a new
paradigm for solving optimal control problems in
[t6-Liu financial markets.

The results of this study show that the dynamic
programming principle for optimal control of uncer-
tain stochastic differential equations can be applied
in optimal portfolio selection. Also, the study results
indicate that the optimal fraction of investment is
independent of wealth. The results are valuable for
solving the optimal portfolio selection problem in
[t0-Liu financial markets. The main conclusion of
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this study is that, in It6-Liu financial markets, the dynamic programming principle for optimal control of
uncertain stochastic differential equations can be applied in solving the optimal portfolio selection problem.

The entire paper is organised in the following order. Section 2 contains the preliminaries. In Section 3,
an uncertain random optimal control problem is proposed, and the equation of optimality and the principle
of optimality are derived and proven. In Section 4, an examination of the portfolio selection problem is
done using the dynamic programming approach. Finally, conclusions are articulated in Section 5.

Preliminaries
Some important definitions relating to the concept of uncertain random processes are presented in this
section. Let (F, LM ) be the universal set on an uncertain space, a o-algebra, and an uncertain measure,
respectively. Also, let (Q, F ,P) be the universal set on a probability space, a 6-algebra, and a probability
measure, respectively. The chance space is given by (I',£, M) x(Q, F, P).
The normality, duality, and monotonicity properties of a chance space were verified by [10].
Definition 1 [10] Given a chance space (T, £, M )x(Q,F,P), if 6 L® F is an event, then

Ch(6) =J;P{meQ | MiyeT | (v,0)[8)>x)dx >

where (Q, F, P)and (T, £, M) are a probability space and an uncertainty space in that order.
Definition 2 [10] An uncertain random variable refers to a function £ from a chance space
(T,L£,M) x(Q,F,P) to the set R such that € € B is an event in £® F for every Borel set B of real num-
bers.

Definition 3 [10] For a measurable function v, if F(x) is the cumulative distribution function of a
random variable k,T denotes an uncertain variable and y (x, 1) has an uncertainty distribution ‘I’(x, y),
the chance distribution of (i, ) is given by

o(y)= [ W(x,p)dF(x),

where x and y are the realisations of kand 1, respectively.

Definition 4 [11] Let (T, £, M)x(Q,F, P) be a chance space, and let T refer to a totally ordered set. An
uncertain random process refers to a function X, (y,®) from 7'x(I,£,M)x(Q,F,P) to the set of real
numbers such that {X ,e B} isaneventin L® F for every Borel set B of real numbers at each time t.

Definition 5 [11] Assume X, is an uncertain random process on a chance space (T, £, M )x(Q,F, P).
Then, for each fixed ¥ €T and @ € Q, the function X, (y*,co*) is called a sample path of the uncertain
random process of X, .

Definition 6 [11] An uncertain random process G, is a stationary increment uncertain random process
if, for # >0, the increment G,, , — G, are identically distributed uncertain random variables for s >0.

Definition 7 [6] Let C, and B, be a one-dimensional canonical process and one-dimensional Brown-
ian motion, respectively, and let ¥, be an uncertain random process. For given functions f,4 and g, the
differential equation

dY, = f(1,Y,)dt + g(1,Y,)dC, + h(1,Y,)dB,

is called an uncertain stochastic differential equation.

Definition 8 [2] Let X, = (ZI,YI)T be an uncertain random process. For any partition
P=a=t,t),1;...1,, =b of the closed interval [a,b], with a=1,,1,,1,...,1,,, =b , the mesh is written as
A =max|t,, —1,|. The It6-Liu integral of X, regarding G, = (B,,C,) is defined as follows

I<i<k 2t

N N
| ZXSdGS=lAi£ré§Z,i (8,,-8,)+tim>¥, (c, -C,).

A0 i+
i=l1

(D
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given that it exists in mean square and is an uncertain random variable where C, and B, are a one-dimen-
sional canonical process and a one-dimensional Wiener process, respectively. In this case, X, is called
[to-Liu integrable. In particular, when Y, =0, X, is called Liu integrable.

Uncertain random optimal control
The problem of optimal control in uncertain random environments concerns choosing a decision that
optimizes an objective function associated with an uncertain stochastic process. In the problem, the state
variable evolves as an uncertain stochastic differential equation. The concept of an uncertain stochastic
integral plays a pivotal role in solving uncertain stochastic differential equations.

Suppose that at any given time s, an uncertain random process X, € R* defined on a chance space
(F, LM ) X (Q, F, P) can be influenced by a choice of a parameter {, which is the decision variable also
referred to as the control. The control variable { represents the function ¢(s, X,) of time s and state X .

Let the performance function be

J(t,%,0)= H f(s.X,.0) dS+Q(XT’T)—‘ ®)

which represents the anticipated expected optimal reward J (t, x,{) available in [t, T ] given that X is the
state variable. The function f (s, XS,(;) represents the objective function and Q(X,,T) represents the
terminal utility function. The state variable can be expressed as

X, = e(t,X,Q)dt+] 0, (1,X,,0)dC, + [ o, (¢, X,,L)dB,.
Given (¢,x) € [0,T]x R, the state equation for se[#,T] is given by
dX, =e(s,X,,()ds+0,(s,X,,0)dC, +0,(s,X,,{)dB,, X, =x. 3)
where e,6, and o, are functions of X,,{ and time s. Equation (2) is assumed to have a unique solution X,".
The value function is given by

V(t,x)=supJ (1,x,0). 4)
g

Using Equations (1), (2) and (3) above, an uncertain random optimal control problem can be expressed as

V(t,x)= s%pEUtTf(s,Xs,?;)ds+Q(XT,T)}

subject to
dX,=e(s,X,,()ds+0,(s,X,,()dC, +0,(s,X,,()dB,, (5)
X, =x.

The basic principle of dynamic programming is called the principle of optimality. Richard Bellman de-
veloped it, and it describes the property of an optimal policy. The principle of optimality for this problem
is outlined below.

Note that in the following computations, we use the simplified notation for
e(s,X,,%), 0, (s, X,,0)and o, (s, X,,(), i.e., we use e,c, and o,.

Theorem 1 (Principle of optimality) Let (t,x) € [O,T ]x R, At >0and? + Ar<T . The value function

V (¢,x) canbe expressed as

V(t,x)= supEU”A’f(s, XS,C)ds+V(t+At,x+AX,)} ©)
C t

giventhat x+AX, = X

1+Ar*
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Proof 1 Let § =7+ Af,u=x+AX, and
) P)
V (t,x)=s%pEUtf(s,Xs,C)ds+V(8,u)}.

From the definition of ¥ (#,x), we have
3 T
V(t,x)> E[th(s,Xs,C|[r’5))ds+J‘6f(s,Xs,C,|[5’T])ds+Q(XT,T)} (7)
given a control process (. The values of the quantity that the decision-maker controls are represented by

€. On the intervals [t,8) and [S,T ], these values can be expressed as { |[; ) and { |[8,T] in that order. The
integrals represented by

f £ (5 X,:8 )

and
JT f (s X,C| )ds
5 »sool5,T]
are autonomous from each other since uncertain stochastic processes
G_{t}=(dB,.dC,)(se[1.5))
and
G_{t}=(dB,.dC,)(s<[1.5])

are also autonomous from each other. Applying theorem 5 in [35] to Equation (6), we get

V(t,x)2 E[jf’f(s,xs,c |[t,8))ds}+EU§f(s,Xs,§ |[5’T])ds+Q(XT,T)}. ®)

If we take the supremum of the right-hand side in Equation (7) with respect to { |[,,8) and { I[&T] ,it can
be concluded that V' (1,x) 2V (1,x). However,

E[Jff(s,Xs,C)ds+Q(X,,T)} - E[J‘?f(s,Xx,C |[t,5))ds}+

+ E[E[L:f(s,)(s,c |[6,T])ds+Q(XT,T)HS EU?f(s,XS,C)ds+V(8,u)} <V (1,x).

This means V (¢,x)<V" (,x), thusV (#,x)=V"(t,x), which concludes the proof. For an uncertain random
optimal control problem in Equation (4), the optimality equation is presented in the following theorem.

Theorem 2 (Equation of optimality) If V' (z,x) : [O, T ]>< R— R is a twice continuously differentiable
function,

V(1) = sup[ P8V, (x)elt x84 2 1x)0 (1 x,C)}.
Proof 2 If Ar>0, :

Jff(s,Xs,C)ds = f(t.x,5)Ar+o(Ar).

Using the Taylor series technique, the result is
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V(B.0) =V (1.x)+V, (1.x)Ar+V, (1,x) AX, +
+ %Vn (r.x)(Ar) +%Vm (6:X)(AX,)> 4V, (1,%) ATAX, +0(A7).

From Equation (5), we get

V(tx)= supEUaf(s,Xs,C)ds + V(S,u)} =sup{f (£,x,0)Ar+V (t,x)+V, (t,x) At + E{V, (t,x)AX, +
4 ! g
# 2, (00) (A 42V (8X)(AX, ) 47, (. 0)AAX, o A1)
Collecting like terms, we have
v, (1,x)AX, +%V,, (1, %) (A1) +
V(t,x)=V (t,x)=sup{f (t,x,0) At +V, (t,x)At+ E +o(Ar)}=0.
¢

+%Vxx (1,%)(AX, )" +V,, (1,%) AtAX,
From Equation (2), we have

(AX, )2 = e? (A1) +6, (AC, )2 +0,”(AB, )2 +
+26,°6,’AC,AB, +2e6,AtAC, +2eG,AtAB,,
AtAX,=e(A1)’ +G,ATAC, +G,ATAB,.
and

AX,=e(At)+0,AC, +G,AB,.

Repzlacing (At)z a(AC; )2 ,AtAB,, AtAC, and AC,AB, by 0 and setting (AB, )2 = At in the equations of
(AX,) and AtAX, yields AtAX, =0 and (AX,)" = o,’At,respectively . This means

—V,(t,x)At = suplf (£, x,0) At + E{V, (1,x)AX, +%V,, (t.x)(Ar)" =
= s%p{f(f,xaC)AHVx (”X)E[AX:]JF%VU (r.x)(ar) +
%Vm (t,x)E[(AX, )+ (t,x)E[AtAXt}+0(Af)}=
= sgup{ f(t,x,0)At+V, (t,x)eAt + E[ 6,AC, +G,AB, ] +%Vxx (t,x) E[olet]+ o(Ar)=
= scup{ F(t,x,0)At+V, (t,x)eAt +%Vm (t,x)o At} =

= Atsup {f(t,x,C)+Vx (t,x)e+%Vxx (t,x)clz}
¢
since

E[6,AC,+0,AB, |=0

and
E[o]At]=c/At.

If we divide both sides by A7, we get
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W, (t,x) =suplf (1,x.0) 4V, (t,x)e(t,x,C)+%Vxx (1,x)0, (£ x,))-
¢

Thus, the theorem has been proven.
The following section applies the above concepts to solve a portfolio selection problem in uncertain
random markets.

Dynamic programming with applications to the portfolio selection model in uncertain
random environments
Consider an uncertain random financial market with bond price S," and stock price S, described by

as, =rS, dt
dS, =eS,dt+5,5,dC, +c,S,dB,

where the risk-less interest rate is given by 7, the mean rate of return for the risky asset is e,s, is uncer-
tain variance, and o, is stochastic variance.

If X, is the investor’s wealth at time ¢, and the investor allocates 1—mn (t) to represent the fraction of a
sure asset, the fraction n(7) caters for the risky asset. Let Z, =X ") be an uncertain random wealth process
for an investment strategy (. Suppose Z, =X ") the wealth process given the risky asset return

ds,

=edt+0,dC, +6,dB,

t

in the interval (z,#+dt] is

dZ, = r(1—n(z))z,dr+ ‘ff n(1)z, =

=Z, [rn (t)+e(1—n(tt))]dt+
+[6,Z,dC,+6,Z,dB,In(1).

Choosing the power utility function similar to equation (11.2.52) in [21], and assuming that there is
no bequest, the portfolio selection model for an investor who is concerned with maximizing the expected
utility on an infinite time interval is given by

T Z )
|4 (t,x) = n%(e})x [Jo exp(—yt)%dt}

subject to

dz, = Z,[ m(t)+e(1-n(1)) |dt +[0,Z,dC, +0,Z,dB, In(r). )

The value function in equation (9) is obtained from equation (5), when Q( XT,T) is assumed to be .
Under equation (9), v is taken to be greater than 0, that is y>0, and A is considered to lie between 0 and
1,i.e., 0<A<I. Applying the equation in Theorem 3.2, we get

A

1
=V, (¢.x) =sup exp(=pt) -+ z[ (r)+e(1-n(0) ]V, + 5 V.0 e (0)’ | (10)
Let

L(n(t)) = exp(—yt)%+ z[rn (t)+e(1—n(t))]l/z +lVZZ(512Z2n(t)2 =

—exp(-v) St 2o+ (rmepn(n)]V. + 3 Vool ()
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An optimal n(7) satisfies

E)L(n(t)) . )
T(t)z(r_e)ZV#szGl () =0.
Thus
0=

Substituting () into Equation (10), we get

v =exp(—'yt)%+z[e+(r—e)[—(r_e)Vz HV ;

. RS
- exp(—yt)%+zeVz _[%]
If we make a conjuncture that V (f,z)=kz" exp(~y), then we get
V, =—kyz" exp(-t),
V. =k g exp(-vt)
and
V., =kL(A-1)2"7 exp(—yr).

After multiplying Equation (12) by exp(yf) throughout, we get

A —e)V V2
_Vt exp('yt) = %+ ZeVz CXp(Yf)—[&JeXp<yt)-

26V,

Substituting V,,Vzz, and V_ in Equation (13), we obtain

A —e) kg
PIVESEE PPN G0
e ek {2012@—1)

Dividing by kz*, we get

1 (r—e)zk
Y_H”}”_[ch(x—l)}

(11)

(12)

(13)

(14)
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If V.,V and V, are substituted in Equation (11), the fraction of investment in a risky asset that is
optimal becomes

-

" 62(A-1)

The above optimal fraction of investment is independent of the total wealth. This fraction of investment
in a risky asset that is optimal is the same as the one obtained by [21].

Conclusions
This study analyzed an uncertain stochastic optimal control problem premised on the notion of an uncer-
tain stochastic process. Further, the Bellman’s principle of optimality in dynamic programming was im-
plemented to deduce the principle of optimality, and then the resulting Hamilton-Jacobi-Bellman equa-
tion (the equation of optimality in uncertain stochastic optimal control) was applied to solve a proposed
portfolio selection problem.

The results of this study indicate that the dynamic programming principle for optimal control of US-
DEs can be applied in optimal portfolio selection. Also, the study results show that the optimal fraction
of investment is independent of wealth. The results are valuable for solving the optimal portfolio selec-
tion problem in It6-Liu financial markets. The main conclusion of this study is that, in It6-Liu financial
markets, the dynamic programming principle for optimal control of USDEs can be applied in solving the
optimal portfolio selection problem. Even though this study has produced interesting results, there is room
for extension. The study can be extended by solving the optimal portfolio selection model with jumps for
It6-Liu financial markets.
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