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ABSTRACT
This study aimed to examine an uncertain stochastic optimal control problem premised on an uncertain stochastic 
process. The proposed approach is used to solve an optimal portfolio selection problem. This paper’s research is 
relevant because it outlines the procedure for solving optimal control problems in uncertain random environments. 
We implement Bellman’s principle of optimality method in dynamic programming to derive the principle of optimality. 
Then the resulting Hamilton-Jacobi-Bellman equation (the equation of optimality in uncertain stochastic optimal 
control) is used to solve a proposed portfolio selection problem. The results of this study show that the dynamic 
programming principle for optimal control of uncertain stochastic differential equations can be applied in optimal 
portfolio selection. Also, the study results indicate that the optimal fraction of investment is independent of wealth. 
The main conclusion of this study is that, in Itô-Liu financial markets, the dynamic programming principle for optimal 
control of uncertain stochastic differential equations can be applied in solving the optimal portfolio selection problem.
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АННОТАЦИЯ
Целью данного исследования было изучение поведения финансовых рынков как неопределенной стоха-
стической задачи оптимального управления, основанной на неопределенном стохастическом процессе. 
Предлагаемый подход используется для решения задачи оптимального выбора портфеля. Исследование, 
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Introduction
Generic uncertainty experienced in natural and 
physical processes manifests in different forms [1]. 
In this modern world, the primary forms of generic 
uncertainty are fuzziness, randomness, uncertainty, 
and the interaction effects between any of these 
three [1, 2]. Randomness describes the state of a 
system that is entirely unknown due to a lack of 
information [3]. Similarly, [4] propounded that ran-
domness is an objective indeterminacy. Random-
ness is modelled by probability theory, which is 
defined as a branch of pure mathematics that deals 
with dynamic random phenomena [5, 6]. Concep-
tually, probability theory is implemented when 
the sample size is big enough to approximate the 
probability distribution from existing frequency 
[6]. Probability theory is the bedrock of stochastic 
finance theory. Fuzziness is the vagueness sur-
rounding the description of the meaning of events, 
phenomena, and statements themselves [3]. Fuzzy 
set theory models fuzziness [7]. The application of 
fuzzy theory in finance theory led to the emergence 
of fuzzy finance theory.

In practice, some knowledge or information is 
typically shown by human semantic terms like ‘‘stock 
price is about $ 28’’ [2, 5, 8]. About $ 28 might mean 
any number close to $ 28, which is imprecise. Exist-
ing literature has indicated that these ‘‘unknown 
constants’’ and ‘‘unsharp concepts’’ behave neither 
like fuzziness nor randomness [2]. This phenomenon 
is called uncertainty or Liu’s uncertainty [5, 8], and 
[4] postulated that uncertainty is subjective indeter-
minacy. The lack of precise or sufficient knowledge 

about realities identifies uncertainty. It should be 
noted that uncertainty is different from randomness 
and fuzziness.

To model uncertainty, [8] introduced uncertainty 
theory. Uncertainty theory is an axiomatic branch 
of mathematics that analyzes uncertain phenomena. 
Uncertainty theory is applied when the sample size is 
missing or too small to approximate the probability 
distribution. Domain specialists are asked to examine 
their belief degrees of every event happening. People 
typically overvalue odd events. Hence, belief degrees 
can have a greater variance than the real frequency. 
In this instance, implementing probability theory re-
sults in counter-intuitive results. Uncertainty theory 
is the foundation of uncertain finance theory. For 
more information concerning Liu’s uncertainty, the 
reader is referred to other authors [5, 8].

In probability theory, stochastic processes (e. g., 
a Brownian motion introduced by Robert Brown in 
1827) were designed to analyze the random phe-
nomena dynamics that change with time. Numerous 
differential equations are powered by a Brownian 
motion in probability theory. These differential equa-
tions are called stochastic differential equations. 
In uncertainty theory, uncertain processes (e. g., a 
canonical Liu process [9]) were introduced to analyze 
the uncertain phenomena and dynamics that change 
with time. Numerous differential equations are pow-
ered by a canonical Liu process in uncertainty theory. 
These differential equations are called uncertain 
differential equations.

Randomness and uncertainty often appear simul-
taneously in a dynamic system [4]. This indicates that 
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проведенное в данной работе, является актуальным, поскольку оно описывает процедуру решения задач 
оптимального управления в неопределенных случайных средах. Авторы реализуют метод принципа оп-
тимальности Беллмана в динамическом программировании для вывода принципа оптимальности. Затем 
полученное уравнение Гамильтона–Якоби–Беллмана (уравнение оптимальности в неопределенном сто-
хастическом оптимальном управлении) используется для решения предложенной задачи выбора порт-
феля. Результаты данного исследования показывают, что принцип динамического программирования для 
оптимального управления неопределенными стохастическими дифференциальными уравнениями может 
быть применен при оптимальном выборе портфеля. Кроме того, результаты исследования указывают на 
то, что оптимальная доля инвестиций не зависит от состояния. Основной вывод данного исследования 
заключается в том, что на финансовых рынках Ито-Лю принцип динамического программирования для 
оптимального управления неопределенными стохастическими дифференциальными уравнениями может 
быть применен при решении задачи оптимального выбора портфеля.
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more than probability theory or uncertainty theory is 
needed to deal with systems that exhibit randomness 
and uncertainty [4, 6]. Chance theory [10] was intro-
duced to deal with sophisticated systems exhibiting 
uncertainty and randomness. Chance theory is a 
mathematical methodology comprising uncertainty 
theory and probability theory [4]. It is defined as a 
branch of pure mathematics concerned with the 
analysis of uncertain random phenomena [4, 6].

To analyze the uncertain random phenomena dy-
namics that change with time in chance theory, [11] 
introduced an uncertain random process. A myriad of 
differential equations are powered by an uncertain 
random process in chance theory. These differential 
equations are known as uncertain random differential 
equations and are powered by both a canonical Liu 
process and a Brownian motion. Uncertain random 
differential equations describe complex mathemati-
cal systems that exhibit randomness and uncertainty 
[2]. When randomness and uncertainty concurrently 
appear in dynamical systems, chance theory is an 
efficient framework to deal with such scenarios.

Since the 1950s, the optimal control theory has 
been a vital division of modern control theory [4]. 
These authors [4] further articulated that analyz-
ing optimal control problems is a topic of interest 
to many researchers, and the analysis has practical 
connotations. Optimal control problems are usually 
categorized into two, i. e., optimal control problems 
associated with adequate information and optimal 
control problems associated with inadequate infor-
mation [4]. The parameters of the systems are known, 
and the dynamics of the systems are described by 
deterministic differential equations when consid-
ering the optimal control problems with complete 
information [4]. On the other hand, [4] postulated 
that systems’ outcomes or conditions could not be 
precisely described due to numerous indeterminate 
factors in the systems’ dynamics when considering 
optimal control problems with inadequate informa-
tion [4].

Optimal control is one of the areas in mathematics 
where generic uncertainty issues must be handled 
cautiously. Applying probability theory in optimal 
control theory gave birth to stochastic optimal con-
trol theory. On the other hand, the application of 
uncertainty theory in optimal control theory led to 
the emergence of uncertain optimal control theory. 
Uncertain optimal control theory and stochastic 
optimal control theory can be used to address op-
timal control problems with inadequate informa-

tion. Basically, uncertain optimal control theory and 
stochastic optimal control theory are used to solve 
control problems with subjective indeterminacy and 
objective indeterminacy, respectively. Stochastic dif-
ferential equations are crucial in stochastic optimal 
control theory [12–16]. The application of stochastic 
optimal control in finance was initiated by [17]. For 
more information concerning stochastic optimal 
control, the reader is referred to the works of, but not 
limited to, [17–23]. Uncertain differential equations 
are vital in uncertain optimal control theory [24–28]. 
For more expositions on uncertain optimal control, 
the reader is referred to, among other sources, [29, 30].

When randomness and uncertainty concurrently 
appear in dynamic systems, chance theory is an ef-
ficient framework to deal with optimal control prob-
lems. In the existing literature, there are limited 
studies that examine uncertain random optimal 
control problems under the chance theory framework 
[4, 31]. Premised on chance theory, [32] presented 
the optimal control model for a multistage uncer-
tain random system. As alluded to earlier, uncertain 
stochastic differential equations play a critical role 
in chance theory and, interestingly, in uncertain 
random markets. [30, 33, 34] are some authors who 
have examined the dynamic principle for optimal 
control of uncertain stochastic differential equations 
in uncertain random markets.

This study examines an uncertain stochastic op-
timal control problem premised on the notion of 
uncertain stochastic process. We implement the Bell-
man’s principle of optimality in dynamic program-
ming to derive the principle of optimality, and then 
the resulting Hamilton-Jacobi-Bellman equation 
(the equation of optimality in uncertain stochastic 
optimal control) is used to solve a proposed port-
folio selection problem. Previously, [17] examined 
a portfolio selection problem using stochastic dif-
ferential equations, while [24] addressed a portfolio 
selection problem by applying uncertain differential 
equations. Therefore, this proposed method is a new 
paradigm for solving optimal control problems in 
Itô-Liu financial markets.

The results of this study show that the dynamic 
programming principle for optimal control of uncer-
tain stochastic differential equations can be applied 
in optimal portfolio selection. Also, the study results 
indicate that the optimal fraction of investment is 
independent of wealth. The results are valuable for 
solving the optimal portfolio selection problem in 
Itô-Liu financial markets. The main conclusion of 
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this study is that, in Itô-Liu financial markets, the dynamic programming principle for optimal control of 
uncertain stochastic differential equations can be applied in solving the optimal portfolio selection problem.

The entire paper is organised in the following order. Section 2 contains the preliminaries. In Section 3, 
an uncertain random optimal control problem is proposed, and the equation of optimality and the principle 
of optimality are derived and proven. In Section 4, an examination of the portfolio selection problem is 
done using the dynamic programming approach. Finally, conclusions are articulated in Section 5.

Preliminaries
Some important definitions relating to the concept of uncertain random processes are presented in this 
section. Let ( ),� ,� ��MΓ  be the universal set on an uncertain space, a σ-algebra, and an uncertain measure, 
respectively. Also, let ( ),� , �PΩ  be the universal set on a probability space, a σ-algebra, and a probability 
measure, respectively. The chance space is given by ( ) ( ),� ,� �� ,� ,�M PΓ × Ω  .

The normality, duality, and monotonicity properties of a chance space were verified by [10].
Definition 1 [10] Given a chance space ( ) ( ),� ,� � � ,� ,� ,M PΓ × Ω   if θ ∈ ⊗   is an event, then

( ) ( )1

0
{ � � | { � � | ,� � � }� � }Ch P x dxθ = ω∈Ω γ ∈Γ γ ω ∫ θ ≥∫  ,

where ( ) ( ),� ,� � � ,� ,�P and MΩ Γ   are a probability space and an uncertainty space in that order.
Definition 2 [10] An uncertain random variable refers to a function ξ from a chance space 
( ) ( ),� ,� �� ,� ,�M PΓ × Ω   to the set   such that Bε ∈  is an event in ⊗ for every Borel set B of real num-
bers.

Definition 3 [10] For a measurable function ψ , if ( )F x  is the cumulative distribution function of a 
random variable ,�κ τ  denotes an uncertain variable and ( ),xψ τ  has an uncertainty distribution ( ), ,x yΨ  
the chance distribution of ( ),ψ κ τ  is given by

( ) ( ) ( ),y x y dF x
∞

−∞
Φ = Ψ∫ ,

where �and�x y  are the realisations of �and� ,κ τ  respectively.
Definition 4 [11] Let ( ) ( ),� ,� ,� ,�M PΓ × Ω   be a chance space, and let T refer to a totally ordered set. An 

uncertain random process refers to a function ( ),tX γ ω  from ( ) ( ),� ,� ,� ,�T M P× Γ × Ω   to the set of real 
numbers such that { }� �tX B∈  is an event in ⊗   for every Borel set B of real numbers at each time t.

Definition 5 [11] Assume �tX  is an uncertain random process on a chance space ( ) ( ),� ,� � ,� ,�M PΓ × Ω  . 
Then, for each fixed * � �γ ∈Γ  and * � ,ω ∈Ω  the function ( )* *,tX γ ω  is called a sample path of the uncertain 
random process of tX .

Definition 6 [11] An uncertain random process tG �is a stationary increment uncertain random process 
if, for � �0t > , the increment t s sG G+ −  are identically distributed uncertain random variables for � �0s > .

Definition 7 [6] Let tC  and tB  be a one-dimensional canonical process and one-dimensional Brown-
ian motion, respectively, and let ��be�tY an uncertain random process. For given functions ,� �and�f h g , the 
differential equation

( ) ( ) ( )� � , � � , � � , ,t t t t t tdY f t Y dt g t Y dC h t Y dB= + +

is called an uncertain stochastic differential equation.
Definition 8 [2] Let ( )� ,

T

t t tX Z Y=  be an uncertain random process. For any partition 
1 2 3 k 1, , ,P a t t t t b+= = … =  of the closed interval [ ], ,a b  with 1 2 3 1� , , , ka t t t t b+= … = , the mesh is written as 

1
1
max i i

i k
t t+< <

∆ = − . The Itô-Liu integral of �regardingtX  ( ),�t t tG B C=  is defined as follows

                                         

( ) ( )
1 1

N

0 0
1 1

d lim lim .
i i i i i i

Nb

S S t t t t t t
a

i i

X G Z B B Y C C
+ +∆→ ∆→

= =

= − + −∑ ∑∫   (1)
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given that it exists in mean square and is an uncertain random variable where tC  and tB  are a one-dimen-
sional canonical process and a one-dimensional Wiener process, respectively. In this case, tX  is called 
Itô-Liu integrable. In particular, when 0,��t tY X≡  is called Liu integrable.

Uncertain random optimal control
The problem of optimal control in uncertain random environments concerns choosing a decision that 
optimizes an objective function associated with an uncertain stochastic process. In the problem, the state 
variable evolves as an uncertain stochastic differential equation. The concept of an uncertain stochastic 
integral plays a pivotal role in solving uncertain stochastic differential equations.

Suppose that at any given time s, an uncertain random process k
sX ∈  defined on a chance space 

( ) ( ),� ,� ,� ,�M PΓ × Ω   can be influenced by a choice of a parameter ζ , which is the decision variable also 
referred to as the control. The control variable ζ  represents the function ( ), ss Xζ  of time s and state sX .

Let the performance function be

                                           
( ) ( ) ( )� , , , , , ,

T

s T
t

J t x E f s X ds Q X T ζ ≡ ζ +  ∫   (2)

which represents the anticipated expected optimal reward ( ), ,J t x ζ  available in [ ],�t T  given that sX  is the 
state variable. The function ( ), ,sf s X ζ  represents the objective function and ( ),TQ X T  represents the 
terminal utility function. The state variable can be expressed as

( ) ( ) ( )2 1
0 0 0

, , , , , , .
s s s

s t t t t tX e t X dt t X dC t X dB= ζ + σ ζ + σ ζ∫ ∫ ∫
Given ( ) [ ], � � 0,t x T∈ ×  , the state equation for [ ]� � ,s t T∈  is given by

                                  ( ) ( ) ( )2 1, , , , , , ,�� .s s s s s s tdX e s X ds s X dC s X dB X x= ζ + σ ζ + σ ζ =   (3)

where 1 2,� � �e andσ σ  are functions of ,sX ζ  and time s. Equation (2) is assumed to have a unique solution *
tX . 

The value function is given by

                                                                
( ) ( ), sup , ,V t x J t x

ζ
≡ ζ .  (4)

Using Equations (1), (2) and (3) above, an uncertain random optimal control problem can be expressed as

                                    

( ) ( ) ( )

( ) ( ) ( )2 1

, sup , , ,

subject�to

, , , , , , ,�

.�

T

s T
t

s s s s s s

t

V t x E f s X ds Q X T

dX e s X ds s X dC s X dB

X x

ζ

  ≡ ζ +   

 = ζ + σ ζ + σ ζ


=

∫

 (5)

 

The basic principle of dynamic programming is called the principle of optimality. Richard Bellman de-
veloped it, and it describes the property of an optimal policy. The principle of optimality for this problem 
is outlined below.

Note that in the following computations, we use the simplified notation for 
( ) ( ) ( )2 1,� , ,�� ,� , � � ,� , ,�s s se s X s X and s Xζ σ ζ σ ζ i.e., we use 2 1,� � � .e andσ σ

Theorem 1 (Principle of optimality) Let ( ) [ ], � � 0,� , � �0�and� � � � �t x T t t t T∈ × ∆ > + ∆ <   . The value function 
( )� ,V t x  can be expressed as

                                      
( ) ( ) ( ), sup , , ,

t t

s t
t

V t x E f s X ds V t t x X
+∆

ζ

 = ζ + + ∆ + ∆  ∫   (6)

given that t t tx X X +∆+ ∆ = .
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Proof 1 Let ,� tt t x Xδ = + ∆ µ = + ∆  and

( ) ( ) ( )* , sup , , , .
д

s
t

V t x E f s X ds V
ζ

 = ζ + δ µ  ∫

From the definition of ( ), ,V t x  we have

                                    
( ) [ )( ) [ ]( ) ( ),,, , , | , , | ,

T

s s TTtt
V t x E f s X ds f s X ds Q X T

δ

δδ δ

 ≥ ζ + ζ +  ∫ ∫
 

 (7)

given a control process ζ . The values of the quantity that the decision-maker controls are represented by 
ζ . On the intervals [ ),t δ  and [ ],� ,Tδ  these values can be expressed as [ ),| t δζ  and [ ],| Tδζ  in that order. The 
integrals represented by

[ )( ),,� , |s tt
f s X ds

δ

δζ∫
and

[ ]( ),, , |
T

s Tf s X dsδδ
ζ∫

are autonomous from each other since uncertain stochastic processes

{ } ( ) [ )( )_ , ,t tG t dB dC s t= ∈ δ

and

{ } ( ) [ ]( )_ , ,t tG t dB dC s t= ∈ δ

are also autonomous from each other. Applying theorem 5 in [35] to Equation (6), we get

                           
( ) [ )( ) [ ]( ) ( ),,, , , | , , | , .

T

s s TTtt
V t x E f s X ds E f s X ds Q X T

δ

δδ δ

   ≥ ζ + ζ +      ∫ ∫  
 (8)

 

If we take the supremum of the right-hand side in Equation (7) with respect to [ ),| t δζ  and [ ],| Tδζ , it can 
be concluded that ( ) ( )*� , � , .V t x V t x≥  However,

( ) ( ) [ )( )
[ ]( ) ( ) ( ) ( ) ( )

,

*
,

, , , , , |

, , | , � ,� , , � , .

T

s t s tt t

T

s T sT t

E f s X ds Q X T E f s X ds

E E f s X ds Q X T E f s X ds V V t x

δ

δ

δ

δδ

   ζ + = ζ +      
    + ζ + ≤ ζ + δ µ ≤        

∫ ∫

∫ ∫
This means ( ) ( ) ( ) ( )* *� , � � � , , �thus� � , � � � , ,V t x V t x V t x V t x≤ =  which concludes the proof. For an uncertain random 

optimal control problem in Equation (4), the optimality equation is presented in the following theorem.
Theorem 2 (Equation of optimality) If ( ) [ ]� , �: � 0, �V t x T × →  is a twice continuously differentiable 

function,

( ) ( ) ( ) ( ) ( ) ( )2
1

1
, sup , , , , , , , , .

2t x xxV t x f t x V t x e t x V t x t x
ζ

 − = ζ + ζ + σ ζ  
Proof 2 If � �0,t∆ >

( ) ( ) ( ), , , , .s
t
f s X ds f t x t o t

δ
ζ = ζ ∆ + ∆∫

Using the Taylor series technique, the result is
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( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )2 2

, , , ,

1 1
, , ( ) � , .

2 2

t x t

tt xx t xt t

V V t x V t x t V t x X

V t x t V t x X V t x t X o t

δ µ = + ∆ + ∆

∆+ + ∆ + ∆ ∆ ∆

+

+

From Equation (5), we get

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )22

, sup , , , sup{ , , , , { ,

1 1
, , , } }.��

2 2

s t x t
t

tt xx t xt t

V t x E f s X ds V f t x t V t x V t x t E V t x X

V t x t V t x X V t x t X o t

δ

ζ ζ

 = ζ + δ µ = ζ ∆ + + ∆ + ∆  

+ ∆ + ∆ + ∆ ∆ ∆

+

+

∫

Collecting like terms, we have

( ) ( ) ( ) ( )
( ) ( )( )

( )( ) ( )
( )

2

2

1
, � ,

2, , sup{ , , , } 0.
1

, �� ,
2

x t tt

t

xx t xt t

V t x X V t x t
V t x V t x f t x t V t x t E o t

V t x X V t x t X
ζ

 ∆ + ∆ +  − = ζ ∆ + ∆ + + ∆ = 
 + ∆ + ∆ ∆  

From Equation (2), we have

( ) ( ) ( ) ( )

( )

2 2 222 2 2
2 1

2 2
2 1 2 1

2

2 1

� � � �

�2 � �2 2 ,

� � � � � .

t t t

t t t t

t t t

X e t C B

C B e t C e t B

t X e t t C t B

∆ = ∆ + σ ∆ + σ ∆

+ σ σ ∆ ∆ + σ ∆ ∆ + σ ∆ ∆

∆ ∆ = ∆ σ

+

+ ∆ ∆ + σ ∆ ∆

and

( ) 2� � � � � .t t q tX e t C B∆ = ∆ + σ ∆ + σ ∆

Replacing ( ) ( )22
, ,� ,� � � � �0t t t t tt C t B t C and C B by∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆  and setting ( )2

tB t∆ = ∆  in the equations of 
( )2

� �t tX and t X∆ ∆ ∆  yields � �0�tt X∆ ∆ = and ( )2 2
1 ,�tX t respectively∆ = σ ∆ . This means

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

2

2

2

1
, sup{ , , { , ,

2

1
sup{ , , , ,

2

1
, , }�

2

t x t tt

x t tt

xx t xt t

V t x t f t x t E V t x X V t x t

f t x t V t x E X V t x t

V t x E X V t x E t X o t

ζ

ζ

− ∆ = ζ ∆ + ∆ + ∆

= ζ ∆ + ∆ + ∆ +  

  + ∆ + ∆ ∆ + ∆ = 

=



( ) ( ) ( ) ( )2
2 1 1

1
� sup{ , , , �� , }�

2x t t xxf t x t V t x e t E C B V t x E t o t
ζ

 = ζ ∆ + ∆ + σ ∆ + σ ∆ + σ ∆ + ∆ =    

( ) ( ) ( ) 2
1

1
� sup{ , , , , }

2x xxf t x t V t x e t V t x t
ζ

= ζ ∆ + ∆ + σ ∆ =

( ) ( ) ( ) 2
1

1
�sup { , , , , }

2x xxt f t x V t x e V t x
ζ

= ∆ ζ + + σ

since

2 1� � � �0t tE C Bσ ∆ + σ ∆ =  

and
2 2

1 1E t t σ ∆ = σ ∆  .

If we divide both sides by t∆ , we get
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( ) ( ) ( ) ( ) ( ) ( )2
1

������������������������������

1
, sup{ , , , , , , , , }

2t x xxV t x f t x V t x e t x V t x t x
ζ

− = ζ + ζ + σ ζ .

Thus, the theorem has been proven.
The following section applies the above concepts to solve a portfolio selection problem in uncertain 

random markets.

Dynamic programming with applications to the portfolio selection model in uncertain 
random environments

Consider an uncertain random financial market with bond price *
tS  and stock price tS  described by

* *

2 1

� �t t

t t t t t t

dS rS dt

dS eS dt S dC S dB

 =


= + σ + σ

where the risk-less interest rate is given by ,r  the mean rate of return for the risky asset is 2,� �e σ is uncer-
tain variance, and 1 �σ is stochastic variance.

If tX  is the investor’s wealth at time t, and the investor allocates ( )1– �tη to represent the fraction of a 
sure asset, the fraction ( )tη  caters for the risky asset. Let ( )� � t

tZ X η=  be an uncertain random wealth process 
for an investment strategy ζ . Suppose ( )� � ,t

tZ X η=  the wealth process given the risky asset return

2 1
t

t t
t

dS
edt dC dB

S
= + σ + σ

in the interval ( ], � �t t dt+  is

( )( ) ( )1 t
t t t

t

dS
dZ r t Z dt t Z

S
== − η + η

( ) ( )( )1tZ r t e t dt = η + − η + 
( )2 1[ ] .t t t tZ dC Z dB t+ σ + σ η

Choosing the power utility function similar to equation (11.2.52) in [21], and assuming that there is 
no bequest, the portfolio selection model for an investor who is concerned with maximizing the expected 
utility on an infinite time interval is given by

                                            

( )
( )

( )

( ) ( )( ) ( )

0

2 1

( )
, max exp

subject�to� �������

1 [ ] .

T
t

t

t t t t t t

Z
V t x t dt

dZ Z r t e t dt Z dC Z dB t

λ

η

  
≡ −γ  λ  



  = η + − η + σ + σ η  


∫

 

(9)

The value function in equation (9) is obtained from equation (5), when ( )� , � � � � �0.�TQ X T is assumed tobe
Under equation (9), γ  is taken to be greater than 0, that is � �0,�γ > and λ  is considered to lie between 0 and 
1, i. e., 0� � � 1�<λ < . Applying the equation in Theorem 3.2, we get

                   
( ) ( ) ( ) ( )( ) ( )22 2

1

1
, sup exp 1 .

2t z zz

z
V t x t z r t e t V V z t

λ

ζ

  − = −γ + η + − η + σ η  λ 
  (10)

Let

( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

22 2
1

22 2
1

1
���� exp 1

2

1
exp .

2

z zz

z zz

z
L t t z r t e t V V z t

z
t z e r e t V V z t

λ

λ

 η = −γ + η + − η + σ η = λ

 = −γ + + − η + σ η λ
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An optimal ( )tη  satisfies

( )( )
( ) ( ) ( )2 2

1z zz

L t
r e zV V z t

t

∂ η
= − + σ η

∂η
 = 0.

Thus

             
( ) ( )

2
1

� z

zz

r e V
t

z V

−
η = −

σ
.  (11)

Substituting ( )tη  into Equation (10), we get

( ) ( ) ( )
2

1

exp z
t z

zz

r e Vz
V t z e r e V

z V

λ

+
  −

− = −γ + + − −  λ σ   

( ) 2

2 2
1 2

1

1

2
z

zz
zz

r e V
V z

z V
=

 −
+ σ − σ 

                                                          ( ) ( )2 2

2
1

� exp .
2

л
z

z
zz

r e Vz
t zeV

у V

 −
= −γ + −   λ  

  (12)
       

If we make a conjuncture that ( ) ( )� , � � exp ,V t z kz tλ= −γ  then we get

( )� �exp ,л
tV k z t= − γ −γ

( )1� �expzV k z tλ−= λ −γ

and

( ) ( )2� � 1� �exp .zzV k z tλ−= λ λ − −γ

After multiplying Equation (12) by ( )exp tγ  throughout, we get

                                         

( ) ( ) ( ) ( )
2 2

2
1

exp exp exp .��
2

z
t z

zz

r e Vz
V t zeV t t

V

λ  −
− γ = + γ − γ  λ σ 

  (13)

Substituting ,� , �and�t zV Vzz V  in Equation (13), we obtain ���������

                                                         
( )

( )
2

2
1

.�
2 1

r e k zz
k z ek z

λλ
λ λ

 − λ
γ = + λ −   λ σ λ −   

(14)

Dividing by ,kz λ  we get

( )
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2

2
1

1
.��������

2 1

r e
e

k

 − λ
γ = + λ −   λ σ λ − 
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If ,� �and�t zz zV V V  are substituted in Equation (11), the fraction of investment in a risky asset that is 
optimal becomes

( ) ( )
( )2

1 1

r e
t

−
η =

σ λ −
.

The above optimal fraction of investment is independent of the total wealth. This fraction of investment 
in a risky asset that is optimal is the same as the one obtained by [21].

Conclusions
This study analyzed an uncertain stochastic optimal control problem premised on the notion of an uncer-
tain stochastic process. Further, the Bellman’s principle of optimality in dynamic programming was im-
plemented to deduce the principle of optimality, and then the resulting Hamilton-Jacobi-Bellman equa-
tion (the equation of optimality in uncertain stochastic optimal control) was applied to solve a proposed 
portfolio selection problem.

The results of this study indicate that the dynamic programming principle for optimal control of US-
DEs can be applied in optimal portfolio selection. Also, the study results show that the optimal fraction 
of investment is independent of wealth. The results are valuable for solving the optimal portfolio selec-
tion problem in Itô-Liu financial markets. The main conclusion of this study is that, in Itô-Liu financial 
markets, the dynamic programming principle for optimal control of USDEs can be applied in solving the 
optimal portfolio selection problem. Even though this study has produced interesting results, there is room 
for extension. The study can be extended by solving the optimal portfolio selection model with jumps for 
Itô-Liu financial markets.

REFERENCES
1. Jiwo S., Chikodza E. A hybrid optimal control model. Journal of Uncertain Systems. 2015;9(1):3–9.
2. Fei W. Optimal control of uncertain stochastic systems with Markovian switching and its applications to portfolio 

decisions. Cybernetics and Systems. 2014 Jan 2;45(1):69–88. URL: https://doi.org/10.1080/01969722.2014.862445
3. Zimmermann H. J. Fuzzy set theory —  and its applications. Springer Science and Business Media; 2011 Jun 27.
4. Chen X., Zhu Y., Sheng L. Optimal control for uncertain stochastic dynamic systems with jump and application to an 

advertising model. Applied Mathematics and Computation. 2021 Oct 15;407:126337. URL: https://doi.org/10.1016/j.
amc.2021.126337

5. Liu B. Uncertainty Theory (5th Ed.). China: Uncertainty Theory Laboratory; 2024.
6. Matenda F. R., Chikodza E. A stock model with jumps for Itô–Liu financial markets. Soft Computing. 2019 Jun 

1;23:4065–4080. DOI: 10.1007/s00500–018–3054–8
7. Zadeh L. A. Fuzzy sets. Information and control. 1965;8(3):338–53. URL: https://doi.org/10.1016/S 0019–

9958(65)90241-X
8. Liu B. Uncertainty Theory (2nd Ed.) Berlin: Springer-Verlag; 2007.
9. Liu B. Some research problems in uncertainty theory. Journal of Uncertain systems. 2009;3(1):3–10.

10. Liu Y. Uncertain random variables: A mixture of uncertainty and randomness. Soft Computing. 2013;17:625–634. 
URL: https://doi.org/10.1007/s00500–012–0935–0

11. Gao J., Yao K. Some concepts and theorems of uncertain random process. International Journal of Intelligent Systems. 
2015;30(1):52–65. URL: https://doi.org/10.1002/int.21681

12. Wang G., Wu Z., Xiong J. An introduction to optimal control of FBSDE with incomplete information: Springer; 2018.
13. Apollinaire NM, Amanda PN. Stochastic Optimal Control Theory Applied in Finance. Science. 2022;7(4):59–67. DOI: 

10.11648/j.mcs.20220704.11
14. Bayraktar E., Yao S. Stochastic control/stopping problem with expectation constraints. Stochastic Processes and their 

Applications. 2024:104430. URL: https://doi.org/10.1016/j.spa.2024.104430
15. Song Y., Wu Z. The general maximum principle for discrete-time stochastic control problems. Automatica. 

2024;159:111338. URL: https://doi.org/10.1016/j.automatica.2023.111338
16. Merton R. C. Theory of rational option pricing. The Bell Journal of economics and management science. 1973:141–83.

Dynamic Programming Principle for Optimal Control of Uncertain Random Differential Equations  
and its Application to Optimal Portfolio Selection



84 rbes.fa.ru

17. Merton R. C. Optimal consumption and portfolio rules in a continuous time model. Journal of Economic Theory. 
1971;3:373–413.

18. Fleming W. H., Rishel R. W. Deterministic and stochastic optimal control: Springer Science and Business Media; 2012.
19. Karatzas I. Optimization problems in the theory of continuous trading. SIAM Journal on Control and Optimization. 

1989;27(6):1221–59. URL: https://doi.org/10.1137/0327063
20. Agram N., Øksendal B. Stochastic control of memory mean-field processes. Applied Mathematics and Optimization. 

2019;79:181–204. URL: https://doi.org/10.1007/s00245–017–9425–1
21. Oksendal B. Stochastic differential equations: an introduction with applications: Springer Science and Business 

Media; 2013.
22. Øksendal B., Sulem A. A maximum principle for optimal control of stochastic systems with delay, with applications 

to finance. Preprint series Pure mathematics. URL: https://www.duo.uio.no/bitstream/handle/10852/10711/1/
pm29–00.pdf

23. Øksendal B., Sulem A. Stochastic control of Itô-Lévy processes with applications to finance. Communications on 
Stochastic Analysis. 2014;8(1). DOI: 10.31390/cosa.8.1.01

24. Zhu Y. Uncertain optimal control with application to a portfolio selection model. Cybernetics and Systems: An 
International Journal. 2010;41(7):535–547. URL: https://doi.org/10.1080/01969722.2010.511552

25. Chen Y., Zhu Y., Li B. Indefinite LQ optimal control with cross term for discrete-time uncertain systems. 
Mathematical Methods in the Applied Sciences. 2019;42(4):1194–209. URL: https://doi.org/10.1002/mma.5422

26. Yan H., Jin T., Sun Y. Uncertain bang–bang control problem for multi-stage switched systems. Physica A: Statistical 
Mechanics and its Applications. 2020;551:124115. URL: https://doi.org/10.1016/j.physa.2019.124115

27. Deng L., Zhu Y. An uncertain optimal control model with n jumps and application. Computer Science and Information 
Systems. 2012;9(4):1453–68. DOI: 10.2298/CSIS 120225049D 28. Chen R., Zhu Y. An optimal control model for 
uncertain systems with time-delay. Journal of the Operations Research Society of Japan. 2013;56(4):243–56. URL: 
https://doi.org/10.1016/S 0045–7949(03)00146–9

28. Jin T., Zhu Y., Shu Y., Cao J., Yan H., Jiang D. Uncertain optimal control problem with the first hitting time objective 
and application to a portfolio selection model. Journal of Intelligent and Fuzzy Systems. 2023;44(2):1585–99. DOI: 
10.3233/JIFS-222041

29. Chen X., Zhu Y. Optimal control for uncertain random singular systems with multiple time-delays. Chaos, Solitons 
and Fractals. 2021;152:111371. DOI: 10.1016/j.chaos.2021.111371

30. Xin Chen Y. Z. Uncertain random linear quadratic control with multiplicative and additive noises. Asian Journal of 
Control. 2020;23(6):2849–64. URL: https://doi.org/10.1002/asjc.2460

31. Chen X., Jin T. Optimal control for a multistage uncertain random system. IEEE Access. 2023;11:2105–17. DOI: 
10.1109/ACCESS.2023.3234068

32. Chen X., Zhu Y. Multistage uncertain random linear quadratic optimal control. Journal of Systems Science and 
Complexity. 2020;33(6):1847–72. URL: https://doi.org/10.1007/s11424–020–8312-z

33. Chen X., Zhu Y. Optimal control for multistage uncertain random dynamic systems with multiple time delays. ISA 
transactions. 2022;129:171–91. URL: https://doi.org/10.1016/j.isatra.2022.02.016

34. Liu Y. Uncertain random programming with applications. Fuzzy Optimization and Decision Making. 2013;12:153–69. 
URL: https://doi.org/10.1007/s10700–012–9149–2

ABOUT THE AUTHORS / ИНФОРМАЦИЯ ОБ АВТОРАХ

Justin Chirima —  PhD in Mathematics of Finance, Lecturer, Department of Mathematical Sciences, University 
of Malawi, Zomba, Malawi
Джастин Чирима —  PhD по математике финансов, преподаватель кафедры математических наук, 
Университет Малави, Зомба, Малави
https://orcid.org/0000-0002-0542-9661
Corresponding author
chirimaj@gmail.com

Review of Business and Economics Studies



85

Frank Ranganai Matenda —  PhD in Finance, Postdoctoral Research Fellow, School of Accounting, Economics 
and Finance, University of KwaZulu-Natal, Durban, South Africa
Франк Ранганай Матенда —  PhD в области финансов, научный сотрудник (постдок), Школа бух-
галтерского учета, экономики и финансов, Университет Квазулу-Натал, Дурбан, Южная Африка
https://orcid.org/0000-0001-7571-7231
MatendaF@ukzn.ac.za

Eriyoti Chikodza —  PhD in Mathematics of Finance, Senior Lecturer, Department of Mathematics, University 
of Botswana, Gaborone, Botswana
Эриоти Чикодза —  PhD в области финансовой математики, старший преподаватель кафедры ма-
тематики, Университет Ботсваны, Габороне, Ботсвана
Chikodzae@ub.ac.bw

Mabutho Sibanda —  PhD in Finance, Professor and Head of School, School of Accounting, Economics and 
Finance, University of KwaZulu-Natal, Durban, South Africa
Мабуто Сибанда —  PhD в области финансов, профессор и руководитель школы, факультет бухгал-
терского учета, экономики и финансов, Университет Квазулу-Натал, Дурбан, Южная Африка
https://orcid.org/0000-0002-8656-7539
sibandam@ukzn.ac.za

Authors’ declared contributions:
Justin Chirima —  conceptualization, critical analysis of literature, results presentation, and the initial draft 
of the manuscript.
Frank Ranganai Matenda —  critical analysis of literature, results presentation, editing, and funding 
acquisition.
Eriyoti Chikodza —  critical analysis of literature and editing.
Mabutho Sibanda —  critical analysis of literature, funding acquisition, and editing.

Conflicts of Interest Statement: The authors have no conflicts of interest to declare.
The article was submitted on 23.08.2024; revised on 12.09.2024 and accepted for publication on 19.09.2024.
The authors read and approved the final version of the manuscript.

Dynamic Programming Principle for Optimal Control of Uncertain Random Differential Equations  
and its Application to Optimal Portfolio Selection


