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ABSTRACT
Option pricing is one of the most important problems of contemporary quantitative finance. It can be solved
in complete markets with non-arbitrage option price being uniquely determined via averaging with respect to
a unique risk-neutral measure. In incomplete markets, an adequate option pricing is achieved by determining
an interval of non-arbitrage option prices as a region of negotiation between seller and buyer of the option.
End points of this interval characterise the minimum and maximum average of discounted pay-off function
over the set of equivalent risk-neutral measures. By estimating these end points, one constructs super
hedging strategies providing a risk-management in such contracts. The current paper analyses an interesting
approach to this pricing problem, which consists of introducing the necessary amount of auxiliary assets such
that the market becomes complete with option price uniquely determined. One can estimate the interval of
non-arbitrage prices by taking minimal and maximal price values from various numbers calculated with the
help of different completions. It is a dual characterisation of option prices in incomplete markets, and it is
described here in detail for the multivariate diffusion market model. Besides that, the paper discusses how
this method can be exploited in optimal investment and partial hedging problems.
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OPUTUHANDBHAA CTATbA

O mMeToAe pbIHOYHbIX MOMOJIHEHUMH
B 334a4aX OL,eHKM CTOUMOCTU OMLIMOHOB

Unba Bacunbes, Anekcanap MenbHUKOB
YHuBepcuteT AnbbepTbl, 9AMOHTOH, AB, KaHaza

AHHOTALMUA
3aa4a OLLEHKM CTOMMOCTM OMLMOHOB SIBASIETCS OAHOM M3 CaMbIX BaXXHbIX B 06/1aCTM COBPEMEHHbIX MaTeEMATH-
YyeckMx PUHAHCOB. B ciiyyae NonHOro pbiHka CTOMMOCTb OMLMOHA, UCK/0YatoLLas apOUTpaxk, MOXeT BbITb onpe-
[lefleHa eAMHCTBEHHbIM 06pa3oM MOCPeACTBOM YCPeAHEHUS N0 eAUMHCTBEHHOM pUCK-HeMTpanbHoi Mepe. [ng
HEMOJIHOTO PbIHKA, OHAKO, PUCK-HEMTpanbHas Mepa He YHUKaNbHA U BO3MOXHO OLEHUTb CTOMMOCTb OMLMOHA
B BUOE MHTEpBana LEH, He AOMYCKaLWMX apOUTpax, KoTopble 6binn Bbl MPpUEMNEMBI KaK 415 NpoAaBLa, Tak
M ON9 nokKynaTens KOHTpakTa. [paHUYHble TOUYKM TaKOro MHTEpBana XapakTepusyT MUHUMANbHYIO U MaKCK-
MaslbHY0 CTOMMOCTb, HA MHOXECTBE SKBMBANEHTHbIX PUCK-HENTPAbHbIX MEP AAHHOIO PbIHKA, @ TAKXE CpefHue
CTOMMOCTM AUCKOHTUPOBAHHOM PYHKLMK BbIMAAThl OMNLMOHA. 3HAs rpaHMLbl MONYYEHHOrO MHTEPBAnNa, B LLENsxX
PUCK-MEHEMKMEHTA, MHBECTOP POPMUPYET Cynep-XemKupyoLme cTpaTteruun. B Hactosawlei pabote npusoanTCcs
OPUTUHAJbHBIM MOAXOL, K PELLEHMUI0 NPOBeMbl OLLEHKM rpaHUL, 6e3apbuTpaXkHOM CTOMMOCTM OMLLMOHA Ha He-
MosIHOM pbiHKe. CyTb MOAX0AA 3aKNH0YAETCS B f0DaBIEHNM HEOBXOAMMOrO YMC/Ia BCMIOMOraTe/bHbIX aKTUBOB
C LleNblo MOJTyYeHMs MOSTHOTO PbIHKA, HA KOTOPOM 3afa4ya MMEeeT eAnHCTBEHHOE pelleHue. PaccMaTtpuBas Bce-
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BO3MOJXXHbIE MOMOJIHEHMS, BO3MOXHO TAKXE OLEHUTb MMHUMa/bHYI0 M MaKCMMasbHYK CTOMMOCTM OMLMOHOB Ha
HEMOMIHOM PbIHKE M MONYYUTb MHTEpBaN Be3apbuUTpakHbIX LEH. Takoe onucaHue aBiseTcs AyasbHOM XxapakTe-
PUCTUKOM MHTEpBaNa CTOMMOCTM OMLMOHA Ha HEMOMHOM PbIHKE. ABTOpbI I€Ta/lbHO PacCMOTPENM NPUMEHEHUE
[laHHOro Noaxoaa K MHOrOMepHOM AMdPY3MOHHOM MOAENM pbiHKA M 06CYAUNM BO3MOXHOCTb MPUMEHEHMUS
[IaHHOTO MOAX0Aa NPU PeLleHnm 3a4a4 HEMOHOTO XeAXMPOBaHMUSA U ONTUMaNbHOrO MHBECTUPOBAHMA.

Knroueenie cnoea: LeHOOOpa3oBaHWE OMLMOHOB; MOJIHbIE PbIHKM; HEMOJHbIE PbIHKK; HEAPOUTPAXKHbIE LEHBI;

CTpaTerMm XemKMpPOBaHMS; yNpaBieHWe pUCKaMm

1 Introduction

The problem of option pricing remains one
of the most attractive and valuable problems.
Mathematically, this problem admits a perfect
solution if the market is complete, i.e., every
contingent claim is attainable in the class of
self-financing strategies or, equivalently, only
one risk-neutral measure exists. Averaging
over such a measure leads to a unique option
price, called fair price in such a market. In
an incomplete market, where non-attainable
contingent claims exist, the situation is much
more complicated because there are infinitely
many risk-neutral measures. Averaging given
discounted contingent claim over each such
measure, one can get the whole interval of
non-arbitrage option prices in contrast to one
price in a complete market. So, in incomplete
markets, to solve the option pricing problem,
one needs to calculate the end points of this
interval or provide their estimates.

In the present paper, we describe a fruit-
ful method of solving the problem mentioned
above. The leading idea of the proposed method
is to transform the initial incomplete market
model in such a way to make it complete and,
hence, make it possible to calculate the unique
price for a given contingent claim. Further, con-
sidering all possible transformations of the
initial model, we get a set of non-arbitrage
option prices similar to the set that existed in
the classical approach. These findings lead to
the dual characterisation of this set via minimal
and maximal values as lower and upper option
prices. Such a method of market completions
was independently proposed for different in-
complete market models: Karatzas (1997) —
for multivariate diffusion models, Melnikov
and Feoktistov, (2001) and also Appendix 3 of
Melnikov (1999) — for multinomial markets.
The approach also works for pricing Ameri-
can options too (see, Guilan, 1999). Since that
time, option pricing theory was tremendously
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developed in different aspects, including im-
perfect hedging, utility-indifference pricing,
etc. It is pretty natural to expand the range of
its applications.

We demonstrate that instead of using a set
of equivalent local risk-neutral measures as a
parameter for fair price interval estimation, an
agent can work with an easier-to-interpret set of
possible completion assets. For obvious reasons,
this approach opens a way to nice flexibility of
auxiliary assets and greater practical application
as one can potentially find necessary assets to
complete the market.

The method of market completions can mainly
be used in two different ways. The first approach
consists in the estimation of the price intervals. As
there is a set of possible orthogonal completions
available, one may aim at the estimation of the
intervals of optimal prices that can be uniquely
calculated in complete markets. The second ap-
proach is to pick particular completion. This idea
is similar to choosing a specific measure of risks
such as Esscher measure or Minimal Relative
Entropy measure (see, for example, Miyahara,
1995). The second approach allows us to be more
specific regarding assets required for the market
to be complete. In some cases, it might be even
possible to reverse-engineer such auxiliary as-
sets, for instance, with the help of the BSDE
technique (see Kobylanski, 2000).

In addition to option pricing problems, in-
vestors are also interested in finding an op-
timal strategy in incomplete market, often
with some constraints. So, it is natural to look
towards applying the proposed dual charac-
terisation for these types of problems. There
is a well-developed study in the area of par-
tial hedging in complete markets. In Follmer
and Leukert (1999) and Spivak and Cvitanic
(1999), authors considered quantile hedging, or
maximisation of the probability of successful
perfect-hedging, in Follmer and Leukert (2000),
authors also investigated shortfall minimi-
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sation in line with its utility-weighted value
minimisation. These articles lay a foundation
of partial hedging with the help of Neyman-
Pearson lemma and Convex optimisation meth-
ods. Since recently, risk exposure is measured
with the help of special measures widely used
by market participants: Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR). The
latter one is better known as Expected Short-
fall (ES) and was recommended in 2016 in The
Market Risk Framework of Basel III — an in-
ternational regulatory accord. These measures
spark a particular interest in their application
in the optimal partial-hedging problem. Mel-
nikov & Smirnov (2012) show that it is still
possible to apply Neyman-Pearson lemma to
CVaR optimisation. Recent papers Cong et al.
(2014), Li and Xu (2013), Capinski (2014), and
Godin (2015) demonstrate a growing interest in
CVaR optimisation. We will demonstrate how
the method of market completions becoming a
useful tool when solving this type of problems
on an incomplete market.

The rest of the paper is structured as follows:
Section 2 provides necessary details regarding
the model under consideration. With the un-
derstanding of the reasons for market structural
incompleteness, we move on to the central part
of the paper — introducing the Method of Market
Completions, which is discussed in Section 3 in
line with its comparison to classical methodolo-
gies risk-neutral price interval estimation on
the incomplete market. Section 4 elaborates on
connections between market completions and
some alternative methods used for handling
market incompleteness. Finally, we briefly cover
potential further steps towards solving famous
partial hedging problems on the incomplete
market in Section 5 and conclude the paper in
Section 6.

2 Multivariate Diffusion Market Model

To demonstrate results that follow, we
will work with the Standard Multidimen-
sional Market Model, which is defined as
(B,S)=(B,.S,,....8"),«r, where (B),., repre-
sents the value process of a risk-free asset that
is usually assumed to be a bank account and
S, =(S},....8"),cr is a n-dimensional vector
process that describes the prices of » risky as-
sets:

dB = Brdt, B,=1

R L (1)
ds; =S} | wdi+ oldW;

j=1

We will also call £, = {G;j }i , @ volatility matrix
of this model. Note that elements of a k£ -dimen-
sional vector W:(Wl,...,Wk) are independent
standard Brownian motions. In general, one can
define a multidimensional market model so that
each risky asset price is governed by its own
separate Brownian motions that are mutually
correlated. However, it was shown, for example,
in Dhaene et al. (2013), that both mentioned
models are equivalent. Further in this paper, we
will use the model with independent “underly-
ing” Brownian motions for illustration.

Let us call the (F),.; -measurable process
t=(,.m,,....,n ),y a portfolio (strategy). This
process would reflect amounts of correspond-
ing assets possessed by an investor. Obviously,
the capital or value of such a portfolio can be
described as

th = BtBt + antstl (2)
i=l1

Note that not all strategies would be appro-
priate for the investor. Typically, the agent on
the market has an initial budget x, and the
natural constraint is that strategy value should
not fall below some threshold at any moment ¢
while strategy is in action. To accommodate this
condition, denote the class of admissible port-
folios with initial capital x as

A(x)={n:V7 =x3K(n)20 st V] 2-KVI<T}.

For simplicity, we might consider K =0,
meaning that the investor does not want his
portfolio to have negative value at any moment
until the maturity of the strategy.

Admissible strategy w is called self-financing
if the following conditions hold:

‘Ti [‘7‘;“; ‘ +(n})? i(c? )zjdt < oo
j=1

0 i=l

0t
VE=Vy+ Y [ridst (3)

=10

79



On Market Completions Approach to Option Pricing

In other words, strategy is called self-financ-
ing if its capital changes only due to changes
in asset prices without additional injections or
extractions of capital by the investor. We will
denote the class of self-financing strategies with
initial capital x as SF(x).

Definition 0.1: Model is called arbitrage-free if
there is no strategy m e SF(x) such that it has zero
initial cost of investment and leads to non-zero
profit at maturity with positive probability:

V=0, P(V7>0)>0.

It is well known that the market model is
arbitrage-free if and only if there exists an
equivalent martingale measure. It was shown
in Karatzas and Shreve (2000) that for the Stand-
ard Multidimensional Market Model (1), the
no-arbitrage condition could be summarised in
the following proposition.

Proposition 0.1: If there exists a (F,),.t — Dro-
gressively measurable process 0=(6.,...,0),,
that satisfies

k
ZGjJG{:ui—r, i=1...,n, P—a.s.

J=1

4)

and

1S
E exp[EJZ(e{ydt} < oo, (5)

0 /=1

then the (B,S) the market is arbitrage free.

In other words, the market is arbitrage-free
if system (4) has the solution.

Remark: The inverse Proposition 0.1 is, in
general, not true. Condition (4) should hold. How-
ever, Novikov condition (5) is sufficient but not a
necessary one for uniform integrability of Girsa-
nov exponent and, consequently, for equivalence
of corresponding risk-neutral measure.

Remark: Solution to the system (4): 6, is, actu-
ally, the one to use for the famous Girsanov theo-
rem to switch to equivalent risk-neutral measure
under which discounted risky assets in the model
(1) become martingales.

Remark: Condition (4) can be equivalently
written in a vector form:

6, =n-r

where 0, eR*; u,,reR" Vie[0,T].
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k
Denoting ||o; |I= /2(6?)2 , condition (5) can
also be written as: \ Jj=1
1 T
E exp[—fnc;' 2 dt] < oo,
2 0

Market Completeness

Definition 0.2: (Market completeness) The
market is called complete if for any F; — measur-
able payment function H = Hy (0)>0, such that
E[H] <o there exists a strategy me SF(x) such
that P—as.

VE(x)=H.

Generally speaking, market incompleteness
means that sigma algebra ;> generated by risky
assets is smaller than F on which contingent
claims are defined, namely, 7° c F. There might
be different reasons for market incompleteness,
including, but not limited to:

1. Structural: There are more sources of risks
on the market than tradeable assets available. In
such a case, it is natural to define sigma algebra
for claims as the one generated by underlying
sources of risk. In the case of model (1), it would
be 7.

2. Informational: Some investors may have
more information regarding the asset price dy-
namics on the market than others. Typical cases
of Large investor were described in Eyraud-Loisel
(2019); Follmer and Schweizer (1991).

3. Due to complex parameters or restric-
tions: When parameters of the model become
stochastic values (stochastic volatility, stochastic
drift, etc.) which are not observable explicitly
on the market.

In this paper, we will focus on the structural
incompleteness of the market. Condition for
such incompleteness in case of (1) was obtained
in Karatzas and Shreve (2000) and Dhaene et al.
(2013). We summarise them in the following
theorem.

Theorem 1: Standard financial market M
is complete if and only if a number of available
stocks n = k, where k is a dimension of underlying
Brownian motion.

Consequently, to have a complete market, we
need to have a proper, non-degenerate volatility
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matrix X, with n=k . As market completeness
means the existence of a unique martingale
measure P*, the market is complete if system
(4) possesses the unique solution 6, e R*. Gir-
sanov exponential for transition to that unique
martingale measure in the multidimensional
case will be written in the following form:

dP’ o 1 &t
_ i i i\2
5= exp{ ;le,dw, : Z ! ©') dt} (6)
3 Completions of Diffusion Model
and Option Pricing

We now move on and introduce the method of
market completions which is the main focus of
the present paper. First, we formalise the no-
tion of market completion.

As we already noted, markets, in reality, are
barely complete, so it is reasonable to find a
way to handle market incompleteness. In the
previous chapter, we showed that, when speak-
ing about structural incompleteness, such in-
completeness for Standard Multidimensional
Diffusion market model demonstrated through
the volatility matrix which rank is not full. Or,
roughly speaking, when the volatility matrix for
tradeable assets has a rectangular shape with
more columns (sources of risks represented by
independent Brownian motions) than rows (risky
assets).

In other words, to obtain a complete market
that would correspond to the existing incom-
plete one, it is reasonable to add more “rows”
into the volatility matrix under consideration.
This idea forms a foundation of the method of
market completions.

Obviously, “completing” assets should be
independent of existing ones and among each
other to solve the issue of a non-full rank vola-
tility matrix. Adding them, we obtain a “proper”
volatility matrix that corresponds to some com-
plete market where known and well-developed
methods can be applied.

Definitions of the Method of Market
Completions

Assume the canonical market model (1) with
n risky assets for which n<k . As always, as-
set price dynamics is defined on measure space
(Q,F,P) equipped with filtration F generated

by k -dimensional Brownian motion. We will
call assets that form this incomplete model
primary assets or existing assets.

Denote §¢ a (k—n)— dimensional (F),.; -
adapted process S =(S"",...,85),., with the
same structure as primary assets:

k
ds' = ' Luﬁdt+20§"dW,j}, i=n+l,...k.

J=1

With the help of newly introduced assets, we
can “fix” initially rectangular volatility matrix
for a set of existing risky assets o :

k risks

(M

= (n X k)matrix

by adding k£ —n auxiliary assets introduced:

L1 Lk

Gt’ cen Gt’
nl n,k
O, S,
= = (k X k)matrix (8)
n+l,1 n+l,k
S, S,
k1 Kk
G, O,

Which helps us to arrive at a properly shaped
volatility matrix ¥ .

Definition 0.1: The (k—n)- dimensional
(F) .1 — adapted process S¢=(S;™,...,S¥) r is
called a completion for the (B, S) market if the
resulting volatility matrix 3 has full rank for all
t<T.

Definition 0.2: A completion S¢ = (§“+1,...,§k)
is called orthogonal if it satisfies:

S!,8/ =0,foralli =1,...,n; j =n+1,....k;t €[0,T]
and
S;,S/ =0,foralli, j=n+1,...,k;t €[0,T]

Remark: Operation <,> is taken from the
standard martingale theory and represents the
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quadratic covariation of martingale parts of the
processes.

Further in this paper, the set of orthogonal
completions will be denoted as C”". We dem-
onstrate that any market completion can be
transformed into an orthogonal form.

Lemma 1: For any completion S° €C of the
(B,S) market, it is possible to find an orthogonal
completion S° e C".

Proof

It is enough to show that one can always
construct orthogonal completion from non-
orthogonal assets. It can be accomplished, for ex-
ample, with the help of a famous Gram-Schmidt
method. Our goal is to construct a process
S¢= (f””,...j") that satisfies the definition
above.

To do it, we first define the stochastic loga-
rithm H' =(H)),.;:

i k
dH' = dS; =wdi+y oldW,

t j=1

Considering that i#j,if H/,H/ =0 for all
1€[0,T] then §;,S/. On the other hand, if row-
vectors o) and o/ of volatility matrix are or-
thogonal for i # j for all 7€[0,T], then

t t
H! +£ugds+12il !c”dWs’, H{+

<H’I’H’j> - t -
kot
+J-u§ds + ZJ-Gﬂ aw!
0

=1

Ik

_ il __jl

= JZGS ol ds
0 /=1

Consequently, to complete the proof, it is
enough to show how to construct orthogonal
row-vectors 6/ and it would imply orthogonal-
ity of assets.

To construct such vectors, we will use the
Gram-Schmidt method of orthogonalisation for
o,i=1..,k:
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) . o.,0
with o/=—-~L for
G/,6/
i,j=2,...,k;j<i.lItis easy to see that obtained
vectors are indeed orthogonal.

Let us also obtain the assets for completion.

Defining H' =(H/),., for i=k+1,...,n as

dH' =, + Y &/ dW,,

I=1
—1 _ 1
M, =k,

i-1
AT § i
H =W, = ol
J=1

with

for i=2,...,n. Final completion assets can be
obtained from:

dS! =S/dH/, jek+1,n

Remark: Orthogonalisation of drift terms for
assets in the proof of lemma above plays a rather
technical role. In such a form, one would get a
much simpler solution for the (4).

Working with the Set of Orthogonal
Completions Instead of ELMM
Let us now demonstrate that working with the
set of possible orthogonal completions would be
equivalent to working with the set of equivalent
local martingale measures (ELMM). As a reminder,
an equivalent probability measure is called equiv-
alent (local) martingale measure if discounted
risky asset price under such measure is a (local)
martingale. We will demonstrate this in case of
the problem of estimation of risk-neutral price
interval for an initially incomplete market model.
It is well known that in incomplete markets,
there are infinitely many ELMMs. Consequently,
the risk-neutral price is not unique, and it is more
reasonable to speak about the interval of initial fair
prices. From the classical martingale approach, it
is known that this interval could be described as:

el ]
Pe M BT Pe M BT

where f, — contingent claim maturing at time
T and M — set of all ELMMs.

We will demonstrate that fair price interval
boundaries obtained with the help of the method
of Market Completions coincide with ones from the
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classical approach. It is straightforward that by “com-
pleting” our (B,S) the market we arrive at volatility
matrix ¥ and force the system (4), or, in this case

0, =u —r, P-as.

to have a unique solution 6.

For this completed market model, there should
exist unique equivalent local martingale measure,
parametrised with the help of solution {8, },, . As
each “completed” volatility matrix corresponds to par-
ticular market completion, there is a one-to-one cor-
respondence between the set of ELMM for the initial
incomplete model and a set of orthogonal completions.

Lemma 2:

A. Each completion S° uniquely defines a single
ELMM in the incomplete market. Moreover, for the
equivalent orthogonal complete market (obtained
using the method of Lemma 1), such local mar-
tingale measure will be the same.

B. Each ELMM P in the incomplete market (
P e M) will be a unique ELMM in the associated com-
pleted market model. Therefore, the set M of ELMMs
in the incomplete market is equivalent to the set M°*
of unique ELMDMs corresponding to each completion
of the market.

This beautiful fact allows us to switch analysis
from a very abstract class of Equivalent Martin-
gale measures to a class of “completing” assets.
The latter is much easier to interpret and also
impose different restrictions such as maximal
asset volatility or no short selling on the market.
For now, let us focus on fair price calculation.

Theorem 2: In the incomplete (B,S) market,
assume that r=0 and let M, and G, =(6ﬁ1,...,6§")
be as defined in the proof of Lemma 1 for i=1,...,n
.Let also W be a standard k -dimensional Brown-
ian motion, with the first n elements given by

=, 1 k —
Wi==20 W/ ©)

rj=1

ko )2

for i=1,...,n, t€[0,T], where &} = 2(0,1) )
j=1

Then the upper hedging price can be expressed as

C'(fr.P)=

- (10)

Change of Numeraire
In line with the Equivalent Martingale Measure
approach, it is also worth mentioning the so-
called change of numeraire pricing approach. Its
connection to the method of market completions
was described in Guilan (1999). We provide the
main steps below for informational purposes and
to complete an overview of the method of Market
Completions in application to pricing problem.

According to this approach, instead of trying to
“re-weight” the probability of events by choosing
some risk-neutral measure, one is searching for a
special portfolio that could be used as discount-
ing factor instead of the classical bank account.
However, the choice criteria for such discounting
portfolio stays the same — discounted strategy
prices should be martingales.

More formally, the main goal is to find a port-
folio, which value process X, is a strictly positive,
continuous Ito process such that:

dX, = X, (rdt+mc, (dW, +u,dt)).

Remark: Here, we will intentionally use nota-
tion u instead of © just to distinguish approaches.
However, they both represent the same idea of the
price of the risk.

We want to use this portfolio as numeraire,
such that risk-premiums with respect to this
numeraire are constrained to be equal 0. In
other words, the price process, discounted by a
mentioned portfolio, will be local martingale
w.r.t. “objective” probability P.

Theorem 3: Let a, =(G,G,T)_1 (u,-r1), i.e.,
u, =c! -o,. Consider the self-financing strategy
n, =(0o)), in the risky assets. Denote by M, the
present value of this admissible strategy. Then
M, satisfies SDE:

dM, = M, (rdt +(u,)" (dW, +u,dt))=

= M, (rdt+|u, | dt+(u,)" dW,) (11)

In the market with M, as numeraire, investors are

. . S,
risk-neutral. M-price process S¥ = ﬁt of any asset
t
S, is a local martingale. We refer to it as a market
numeraire.
Proposition 0.1: If m is a strategy that cor-
responds to M, then:
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» m maximises the expected logarithm of terminal wealth

* m is unique even in an incomplete market

» m maximises the expected growth rate.

Details about mentioned properties can be found in Bajeux-Besnainou and Portait (1997).
Price of European contingent claim f; on the complete market, according to market numeraire

approach could be found as:
V. =R’ (i) (12)
0 MT

When one is working with the incomplete market case, it is obvious that there are several risk-neutral
prices, as we can find several o, that fit conditions of Theorem 2. Let us now apply the market com-
pletions approach and show that it can estimate option price boundaries on an incomplete market.

Let us consider some market completion S§°. Then coefficients of these fictitious assets satisfy

det(o(p)) = det(c’ji Oandu(p,a,)= (G’]_l ( b=l J (13)

t t a, _rtIk—n

with T
JII u(p,a,t)|’ dt <o, P-as.
0

On the completed market, one can define market numeraire as in (11):
dM (p,a,t)= M (p,a,t)(r,dt+| u(p,a,1) |’ dt+(u(p,a,t))Tth)

In the completed market, we have the fair price of CC f; calculated similarly to (12):

vy (p,a)=EP{m]-

Let
4 (p) = inf ¥, (P,a), V, (P) =supV, (p,a)

aer aer

T
with D, = {a : R*™" valued progressively measurable processes such thatf [l u(p, a,t) I dt < ooa.s}.
0
According to Guilan (1999), the following proposition holds.
Proposition 0.1: V,(p) and V, (p) are independent of P.
Proposition 0.1 serves as another proof that it is enough to work with orthogonal completions
only. Let us pick the orthogonal completion 6p’ =0, pp’ =7.Forsuch p and ae D,:

-1
o w,—rl, -1
”(P’a)z[pJ (at’_rlkn]zcr(ooT) (w=rl,)+p" (a=rl,_,)=u+y=u,. (14)

And this U, would be used for the construction of market numeraire. Also, it follows that

oy =0,
and
a=py+rl,_,

It means that the “non-arbitrage” vector u,, on the completed market can be decomposed into
u from incomplete source market and y which is completion dependent. If we define class
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T
K(G) = {\u Jyis R* —valued progressively measurable,c,y, =0,V e [0, T],a.s.andj Iy, I dt < oo,a.s},
0

then this class will be a parameter space for fictitious completions of the incomplete market. For
each y e K (o) one can find a fair price in a completed market. It implies that option price bound-

aries will be
fTT ‘;E;]

Jr ]-;} or inf E[M\V(t)M ( )

M, (T)

yeK(o)

J(t)= sup E| M_ (¢t
()= sup. { ,(0)

Remembering results from Guilan (1999), it is possible to show that these price boundaries

coincide with boundaries from the classical approach:
f;}

In other words, it was also shown that J(¢) coincides with V' (¢). For more details, we also en-
courage the reader to carefully read Guilan (1999) research.

.7-“,:| or inf B {Btg—T

PeM T

4 Completions in Context of Markov Factors, Dimension Reductions and Jumps
Connection to Markov Factor Model .
Denote Girsanov exponential (6) as Z, = TR It is known that this process is a solution for

dZ,=70dW, Z,=1

—i

and noting that 0, = % from non-arbitrage condition X8, =i, (r=0). Then equation (10) can
t

be re-written in the following form:
C(fr.P)= s%pEP I:ZT (8) /7 (W)]

Moreover, as the first k elements of the vector 6 are independent of the choice of comple-
tion and only depend on the correlations between existing assets, one can represent vector
as 0,=a +¢, a,c, €R" where the first one contains elements of 8, calculated based on existing
assets only. Namely:

a=\e...85,0],
c=[0,6/"...0"1".
In this case, the equation for Girsanov exponential can be re-written as
dZ, = ZadW,+ ZcdW, Z,=1

Hence, market completions can be connected to the Markov Factor Model:
ds, = D(s,)(n(¥,)di+o(¥,)aw,)
dB, =rB,dt
where Y, is (k—n) dimensional factor process, which does not contain any price processes
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dY, =uy (Yt)dt+GY (Yt)dI/Vt,
u, and o, are vector functions of appropri-
ate dimensions. Or, more conveniently, to the
Independent Factor Markov Model in which we
assume that vector-valued Wiener process W

could be split as
WS

such that W5 is n-dimensional and corre-
sponds to existing assets on the market and
wY is (k—n) dimensional and corresponds to
factors. In this setting, Markov Factor Model
can be written as:

ds, = D(S,)(u(¥,)dt+o(Y,)dw;*),
dY, =, (Y,)dt+o, (Y,)dw,",
dB, = rB,dt.

(15)

It is possible to show that split (15) is similar
to what was demonstrated in (9) with existing
assets on the incomplete market being assigned,
in fact, to W' for iel..n,te[0,T] which corre-
sponds to W and the rest of W' being assigned
to W as it only depends on (k —n) dimensional
Brownian motion.

Remark: To briefly demonstrate the idea
of transformation completions notation into
Markov Factor model one. Assume that we per-
formed the transformation mentioned in (9)
for the Standard Multidimensional Diffusion
Market model. In this case, it is easy to see
that the “completed” volatility matrix can be
written as:

Where L., is a lower triangle matrix and
D(k_n)x(lk_n) is a diagonal one. This leads to the
natural split of vector W into two parts. Without
loss of generality, one might assume first n elements
of W to be denoted as W® e R" and the last (k-n)

elements as WY e R* ™,

Dimension Reduction
Another natural approach to transform the
volatility matrix into a proper one would be
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to “trim” it. Or somehow “regroup” underly-
ing Brownian motions in such a way that the
reduced volatility matrix for them will have
the proper shape. This idea was introduced by
Zhang (2007).

For the introduced Standard Multidimen-
sional Diffusion Market Model, dynamics of each
risky asset price is governed by the sum of inde-
pendent standard Brownian motions

ds) =S)rdt, Sy =1
k
de=Sf[ufdt+2c5’de,j, i=1l...,n

J=1

However, as already mentioned, it is possible
to write down an equivalent market model which
would be governed by n correlated Brownian
motions instead of k£ independent ones (see,
e.g., Dhaene et al., 2013):

-3

lj

,II

t

then
ds; =S, (widt+1|c} 1| dB; ), i=1,...n.

Obviously, obtained Brownian motions are
not independent anymore, namely

dB,dB/ =p]

.Y ool
Pl =
llo; l-llo; i

In this model, we have n-dimensional Brown-
ian motion vector with correlated components
B = (B,l,. B ) , the relationship between which
can be described by matrix ¥, = {p }i.1-1.n+ Notice
that ¥, is a non-singular, symmetric, and pos-
itive semi-definite. That implies the existence
of matrix square-root 4, :

Y, =4, 'ATT, A, ={atij}i,j:l..n

Moreover, 3W},...
that:

,W,” independent, such

B =ijafdlfﬁ :

J=10
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As a result, risky assets can be presented in
a form

de:Sf{ujdt+6ﬁZaf/dlfl7,f], i=1,..n

J=1

(o]

=04,

Where E, is a diagonal matrix of ¢’ and ma-
trix A4, depends on the particular decomposition
of ¥,. According to Zhang (2007), one obtains
the following model:

dS,":St"[uﬁdt+26?'dVl~/,j}, i=1...n

=1
0, :A;I 'E;l '(!»tf —thn)

etz = (Ht _rtln)T '(GthT )_l (““t _’;ln)

Completions for the Models with Jumps

The idea of adding auxiliary assets to the
market to make it complete is not limited to
the diffusion market model. There were also
some developments towards a more general
geometric Levy model in which asset price is
governed by jumps

dB, = rB,dt
ds,=S,_(udr+dz,)) S,>0,
Z,=cW,+ X,

where X, is a pure jump process and W and
X are independent variables. It is well known
that such Levy model is not complete even in a
one-dimensional case as it includes jumps and
Brownian motions as two independent sources
of risk and only one asset to use. So instead
of introducing the same structure auxiliary as-
sets, authors in Corcuera et al. (2005) enlarge
the Levy market with the so-called i th-power-
jump assets defined as

X0=¥ ax,y, iz2,

0<s<t

where AX =X, -X,_ and X,(l) = X,. Processes
X" are again Levy processes. These power-
jump processes jump at the same time as the
original Z, ; however, jump sizes are the i-th
power of jumps of the original process. Note,

that X = Z% i >2.1t is convenient to re-write
these assets in the compensated form

Enlargement of the model is then consisting
in allowing to trade in assets:

HY) ="y 22,

With these assets available, it was demon-
strated in Corcuera et al. (2005) that any square-
integrable martingale M, can be represented
as follows:

t oo
M, = My + [ndZ, + > hdy?
0 i=2

where A, and hs(i),iZZ are predictable pro-

cesses such that

Z=Z,—(u-r)t,t 20

and

t
E[jms & ds]<oo
0
t
EDMS(") I ds]<<>o.
0

In other words, for any square-integrable
contingent claim f (non-negative, 7, measur-
able random variable) we can set up a sequence
of self-financing portfolios whose final values
converge in I’ (P* . This portfolio will consist
of a finite number of bonds, stocks and i th-
power-jump assets. It means that f can be
replicated, and the market is approximately
complete.

This interesting result is important to con-
sider within the general idea of market com-
pletion because it offers to search for more
specific auxiliary assets beyond just structure-
preserving ones discussed before. In the case of
the Levy market model or another model with
jumps, it might be more convenient to pick
specific types of completing assets for each kind
of risks presented. It is also useful in terms of
interpretation of the auxiliary assets as power-
jump-assets are by nature instruments that
give exposure to moments like variance (2nd-
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power-jump asset) or skewedness and kurtosis
of distribution (3rd and 4th correspondingly).
Assets of such type might be more conveni-
ent to introduce to real markets to fix their
incompleteness.

5 Completions in Optimal
Investment and Partial/Imperfect
Hedging
Let us now elaborate more on the application
of the method of Market Completions. In this
section, we mainly focus on another big part
of the area of the Mathematical Finance field —
hedging of contingent claims with the major

focus on partial hedging.

The idea of introducing fictitious assets to
complete the market has already demonstrated
potential on the side of partial hedging. First, it
is reasonable to look at the classical approaches
of partial hedging known for complete market
and demonstrate potential towards implement-
ing market completions method for the incom-
plete case. As it is known, the most up-to-date
risk measure approved in the Basel III accord
is CVaR.

Definition 0.1: Value-at-Risk (VaR) measure
of aloss X can be defined as

VaR,(X)=infa: P(X >a)<o

Definition 0.2: Conditional Value-at-Risk
(CVaR) measure of a loss X can be defined as

CVaR,(X)= leaRa (x)dx,
o
0

The problem of CVaR optimal hedging con-
tingent claim H under budget constraint x <V
therefore can be stated as

CVaR (x,m)—>min
Ra( ) (x.m) (16)

x<V

Inspired by Rockafellar and Urasev, Melnikov
and Smirnov in Melnikov and Smirnov (2012)
demonstrated that, introducing the special func-
tion of parameter z e R

1 . n +
e(2) =+ minE[ (A (2) V7 (x))]
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where H(z)=(H-z)" — modified contingent
claim H , the problem of CVaR minimisation
in case of European contingent claim will be
equivalent to the following one:

m%lc(z) = r(nir)lCVaR(x (x,m).
z€e X,T

Consequently, solution of (16) can be decom-
posed into consequent optimisation by z after
solving “internal” problem:

E[(H(z)—V{’ (X))+:|—>I’Tltli£1

a7

Alternatively, one can approach this prob-
lem from the perspective of optimal split into
hedged/unhedged proportions of the claim
H=f(H)+R,(H),where f(H) describes the
optimal hedged proportion of the claim. This
method was offered by Cong et al. (2014).

Considering European type contingent claim,
we expect to have a pay-off at maturity time
T, so the total risk exposure of the investor is
going to be

T, (X)=R,(X)+eTI(f (X)), (18)
where H(f(X)) is some chosen pricing func-
tional for the hedged part of exposure.

Given the initial budget constraint, the in-
vestor is pursuing the goal of minimising risk
measure of total exposure (18), given the re-
striction on the initial cost of hedging

min CVaR(T, (X))
st. T(f(X))<m,

According to Cong et al. (2014), under particu-
lar assumptions, an explicit way of identifying
the optimal hedged loss function is stated in
the following theorem.

Theorem 4: Assume that pricing functional is
linear for any time-t contingent payout Z. Then, the
optimal hedged loss function g; is given by

g (x)=(x=d") —(x-u')"

where (d*,u*) satisfies the following equations
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e’ ]-Q(X >x)dx =,
-
Q(X > u*)

]P’(X>u*):0c-Q(X—>d*)

and Q is a risk-neutral measure.

In both approaches, we arrive at some known
problem that is well described for the complete
market. Consequently, completion of the market
can be helpful as it helps to “parametrise” a
solution by the set of completing assets. There-
fore, choice of the proper completion by market
conditions such as partial equilibrium Hu et
al. (2005), Esscher measure or Minimal Rela-
tive Entropy Measure will be a powerful tool
for solving CVaR optimisation problems on the
incomplete market.

To demonstrate sensibility of usage of Method
of Market Completions for solving stated par-
tial hedging problem (17), we provide existing
techniques of partial hedging where Method of
Market Completions has already demonstrated
great potential or ready to be implemented.

Utility Maximisation

Let us start with the simple case when the goal
of the investor is to finance a strategy that pro-
vides the greatest terminal wealth utility.

v (%)= Sl;lll())E[U(V; (x))}

In Karatzas et al. (1991), authors have shown
how to obtain such optimal solution with the
help of convex duality methods. In the core of
these methods lies Legendre-Fenchel transform

U (y)=max(U (x)=xy)=U(I(y))= 1 (»), where

I:R" —» R" is defined as the continuous decreas-
ing inverse function of U’(x) (details in Tou-
chette, n.d.).

The solution to this problem for the complete
market was given explicitly and can be summa-
rised as the following theorem:

Theorem 5: For a given initial budget V, >0,
under the assumption that function

X, (y)= E[Bng 'I(YBTZ;]“)}<°°,V)’>O,

the optimal terminal wealth of a strategy can
be found as

©=1(%(7)8, 22)
where )) is the inverse of the function X.

By introducing martingale X, = E[[STZ%SLF,]
with stochastic integral representation

! T
X, =Vy+[oldW, with g 7 and [llo, I ds <=,
0 0

replicating portfolio for optimal terminal capital
can be obtained as

~ 1
= 7(2? )" (o, +X,8,).

t

Applying the Method of Market Completions
for the case of incomplete markets, one can in-
troduce k—n fictitious assets in addition to »

existing assets on the incomplete market, driv-
en by the same k -dimensional Brownian motion
as n real tradeable assets. Then, the problem of
utility maximisation can be solved in the com-
pleted market with fictitious assets, but there
are infinitely many ways to introduce those fic-
titious assets.

The relative risk process can then be repre-
sented as 6, =6, +v, with 87v, =0. That means
completions could be parametrised by v which
is square-integrable, 7, adapted and R? valued
process.

Denote also exponential local martingale:

Z'= eXD{—jéZdVVS —%j.(ef + vf)dS}
0

0

and the function
vy>0, X,(v)=E|BZy1(vB,Z))|

Also Vve K, (X) where

K (Z)=veK(Z),X,(y)(,Vy)0, define

gv=1(3(x)B,2y)

where ), again is the inverse function of &,

An attainable solution will give us value less
or equal than that. If we find a strategy m with
initial capital x, which does not require the
purchase of the artificial stocks and completion
A, € K, (Z) such that
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s ELo )] £ (E5)
then, for sure, (m,A) would be optimal. In
Karatzas et al. (1991) the following theorem
was proven.

Theorem 6: If we call A

Optimalityof m: EU (V7)< EU(V;‘) Ve A(x)

'Financiability of & : EI&eA(x) such that
Vi =&
Least Favorability of A :

EU(&)<EU(E) WveKk(Z)
Parsimony of A : E[BTZﬁ,;] <x, VveKk (%)

Then B D=C,

Furthermore, if B holds, then the portfolio n
in B satisfies A.

This theorem provides a powerful instrument
in verifying if one can build an optimal strategy
without artificial assets in use, in other words,
when A =0 will satisfy necessary criteria in
Theorem 1. It was shown to be the case in Karat-
zas et al. (1991) for U(X)=In(X) and, under

S
some special conditions for U(X)zX? where

6<1,0 #0. This edge can further be applied to

more specific problems of partial hedging. We
provide one example from Karatzas et al. (1991)
to demonstrate the application of these condi-
tions to the classical logarithm utility function.

Example 1: Classical example of Utility func-
tion to consider is U(x)=In(x). For this function
one has:

and optimal terminal capi;ccal can be calculated as
&5 = v ©
BrZy

One could check that completion with param-
eter A=0 satisfies D.

—JT.VSTdWS -
E[B,Z}&; |=x-E|exp 1‘;
—Jvo 1P ds
0

<x VveK(%)
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as the process under expectation is a su-
permartingale. It means that investor would
not use auxiliary stocks to form an optimal
portfolio even for hedging purposes.

Efficient Hedging

One of such problems emerges when given an
amount of initial capital v, investor’s goal is
to find the admissible strategy with terminal
wealth V. such that

E[U((H—Vrrﬂ — min
sup E*[VT ]S Vo

Pep

(19)

Follmer and Leukert demonstrated in Follmer
and Leukert (2000) that such problem can also be
solved with the help of convex duality methods,
similar to utility maximisation, as one can define
state-dependent utility function

u(x,0)=U(H(0))-U((H (0)-x)").
And then re-write (19) in the following form
E[u(VT,(o)] = max
sup B [VT ]S Vo
P'ep

which can be solved explicitly on the complete
market.

For each z < E"[ H] there is a unique terminal
wealth Z such that

E[u(2,)]=sw{E[U(2.)]0<z < H,E[7]<2].
It takes the form
Z~=[(y(z)Z$ (w),m)AH((o)

where y(z) is the solution of

E'[1(y(2) 2} (0).0) H(0)]=2

Obviously, such a reduction provides strong
evidence that one can move on in the direc-
tion of Theorem 1 to elaborate on mentioned
criteria and generalise them for this category
of problems.
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Quantile Hedging

An important case of efficient hedging is
when we focus on minimising the expected
size of the shortfall, or U(X)=X . This par-
ticular case is extremely useful for solving
(17) to find the solution of CVaR optimisation
problem (16).

Apart from applying similar convex duality
methods Spivak and Cvitanic (1999), one can
use an alternative approach, which involves the
famous Neyman-Pearson lemma. According to
Follmer and Leukert (1999), it is enough to solve
the equivalent problem

where 40 I d Q* 1%

ap " E[H] dP" E[H]

The solution to problems of such a type was
demonstrated in Follmer and Leukert (1999) and
can be found as a perfect hedge for a modified
claim H = Hp where

O=lap +Var_
ap’ ap’

5=inf(a20|E*[H1d,, lsVJ
F>a

V—E*{HI[H, ]

——>a
dP

v=
E [Hld,, ]
ar

It is easy to notice that the solution is based
on finding maximal successful hedging set, which

21

can be represented as {j}f > Const X H } , Where

H is some claim. With the reasonable assump-
tion that claim H depends on some existing
asset S;. and using the following representation
on the complete market

dpP, i Lol (i VWO i
P —exp{e WT_EG T}—(ST) X A

*
T

Ty

where ¢’ = ﬁ, successful hedging set can be

found in the form of
{(S} )(; x A > Const x H (S} )}

which, in the case of one dimension, coincides
with the solution described in Melnikov et al.
(2001).

In an incomplete market case, we again add
some auxiliary assets into consideration. As was
demonstrated above, one can develop innova-
tive Brownian Motion, under which, last (k —n)
coefficients of each row ¢’ for existing assets in
the “completed” volatility matrix will be equal 0.
Then, using representation (6), if claim A still
depends on existing assets only, it is possible
to show that

{dp7;>a.H}: Zp 2.,

asset completion
dP,

>a- H(asset)}

Consequently, it is reasonable to develop a
general theory of applying Method of Market
Completions to the construction of a success-
ful hedging set. It helps reduce the Quantile
Hedging problem to operations with existing
assets only.

6 Conclusion

In this paper Method of Market Completions is
introduced as a dual approach for operating on
incomplete markets. It was demonstrated that
in the case of pricing problem, this approach
leads to the same solution as classical ones. As
the method of market completions offers an al-
ternative way of working with standard prob-
lems of mathematical finance in incomplete
markets, it was shown how to reduce such
problems to the known version in the complete
market.

In line with it, alternative ways of handling
market incompleteness were observed with their
connection to the method of market comple-
tions and possible future developments and
improvements of the presented method. Further
enhancements of this method consist in finding
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a way for reverse-engineering parameters of the other hand, it will also be beneficial to find
the completion required utilising BSDE, partial a way of choosing the most suitable completion
equilibrium market condition or using another according to market conditions and investors
asset class like bonds or insurance contracts. On  goals.
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