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ABSTRACT
Option pricing is one of the most important problems of contemporary quantitative finance. It can be solved 
in complete markets with non-arbitrage option price being uniquely determined via averaging with respect to 
a unique risk-neutral measure. in incomplete markets, an adequate option pricing is achieved by determining 
an interval of non-arbitrage option prices as a region of negotiation between seller and buyer of the option. 
End points of this interval characterise the minimum and maximum average of discounted pay-off function 
over the set of equivalent risk-neutral measures. By estimating these end points, one constructs super 
hedging strategies providing a risk-management in such contracts. The current paper analyses an interesting 
approach to this pricing problem, which consists of introducing the necessary amount of auxiliary assets such 
that the market becomes complete with option price uniquely determined. one can estimate the interval of 
non-arbitrage prices by taking minimal and maximal price values from various numbers calculated with the 
help of different completions. it is a dual characterisation of option prices in incomplete markets, and it is 
described here in detail for the multivariate diffusion market model. Besides that, the paper discusses how 
this method can be exploited in optimal investment and partial hedging problems.
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ОРИГИНАЛЬНАЯ СТАТЬЯ

О методе рыночных пополнений  
в задачах оценки стоимости опционов

Илья Васильев, Александр Мельников
Университет Альберты, Эдмонтон, AB, Канада

АННОТАЦИЯ
Задача оценки стоимости опционов является одной из самых важных в области современных математи-
ческих финансов. В случае полного рынка стоимость опциона, исключающая арбитраж, может быть опре-
делена единственным образом посредством усреднения по единственной риск-нейтральной мере. Для 
неполного рынка, однако, риск-нейтральная мера не уникальна и возможно оценить стоимость опциона 
в виде интервала цен, не допускающих арбитраж, которые были бы приемлемы как для продавца, так 
и для покупателя контракта. Граничные точки такого интервала характеризуют минимальную и макси-
мальную стоимость, на множестве эквивалентных риск-нейтральных мер данного рынка, а также средние 
стоимости дисконтированной функции выплаты опциона. Зная границы полученного интервала, в целях 
риск-менеджмента, инвестор формирует супер-хеджирующие стратегии. В настоящей работе приводится 
оригинальный подход к решению проблемы оценки границ безарбитражной стоимости опциона на не-
полном рынке. Суть подхода заключается в добавлении необходимого числа вспомогательных активов 
с целью получения полного рынка, на котором задача имеет единственное решение. Рассматривая все-
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1 Introduction
The problem of option pricing remains one 
of the most attractive and valuable problems. 
Mathematically, this problem admits a perfect 
solution if the market is complete, i. e., every 
contingent claim is attainable in the class of 
self-financing strategies or, equivalently, only 
one risk-neutral measure exists. Averaging 
over such a measure leads to a unique option 
price, called fair price in such a market. In 
an incomplete market, where non-attainable 
contingent claims exist, the situation is much 
more complicated because there are infinitely 
many risk-neutral measures. Averaging given 
discounted contingent claim over each such 
measure, one can get the whole interval of 
non-arbitrage option prices in contrast to one 
price in a complete market. So, in incomplete 
markets, to solve the option pricing problem, 
one needs to calculate the end points of this 
interval or provide their estimates.

In the present paper, we describe a fruit-
ful method of solving the problem mentioned 
above. The leading idea of the proposed method 
is to transform the initial incomplete market 
model in such a way to make it complete and, 
hence, make it possible to calculate the unique 
price for a given contingent claim. Further, con-
sidering all possible transformations of the 
initial model, we get a set of non-arbitrage 
option prices similar to the set that existed in 
the classical approach. These findings lead to 
the dual characterisation of this set via minimal 
and maximal values as lower and upper option 
prices. Such a method of market completions 
was independently proposed for different in-
complete market models: Karatzas (1997) —  
for multivariate diffusion models, Melnikov 
and Feoktistov, (2001) and also Appendix 3 of 
Melnikov (1999) —  for multinomial markets. 
The approach also works for pricing Ameri-
can options too (see, Guilan, 1999). Since that 
time, option pricing theory was tremendously 

developed in different aspects, including im-
perfect hedging, utility-indifference pricing, 
etc. It is pretty natural to expand the range of 
its applications.

We demonstrate that instead of using a set 
of equivalent local risk-neutral measures as a 
parameter for fair price interval estimation, an 
agent can work with an easier-to-interpret set of 
possible completion assets. For obvious reasons, 
this approach opens a way to nice flexibility of 
auxiliary assets and greater practical application 
as one can potentially find necessary assets to 
complete the market.

The method of market completions can mainly 
be used in two different ways. The first approach 
consists in the estimation of the price intervals. As 
there is a set of possible orthogonal completions 
available, one may aim at the estimation of the 
intervals of optimal prices that can be uniquely 
calculated in complete markets. The second ap-
proach is to pick particular completion. This idea 
is similar to choosing a specific measure of risks 
such as Esscher measure or Minimal Relative 
Entropy measure (see, for example, Miyahara, 
1995). The second approach allows us to be more 
specific regarding assets required for the market 
to be complete. In some cases, it might be even 
possible to reverse-engineer such auxiliary as-
sets, for instance, with the help of the BSDE 
technique (see Kobylanski, 2000).

In addition to option pricing problems, in-
vestors are also interested in finding an op-
timal strategy in incomplete market, often 
with some constraints. So, it is natural to look 
towards applying the proposed dual charac-
terisation for these types of problems. There 
is a well-developed study in the area of par-
tial hedging in complete markets. In Föllmer 
and Leukert (1999) and Spivak and Cvitanic 
(1999), authors considered quantile hedging, or 
maximisation of the probability of successful 
perfect-hedging, in Föllmer and Leukert (2000), 
authors also investigated shortfall minimi-

возможные пополнения, возможно также оценить минимальную и максимальную стоимости опционов на 
неполном рынке и получить интервал безарбитражных цен. Такое описание является дуальной характе-
ристикой интервала стоимости опциона на неполном рынке. Авторы детально рассмотрели применение 
данного подхода к многомерной диффузионной модели рынка и обсудили возможность применения 
данного подхода при решении задач неполного хеджирования и оптимального инвестирования.
Ключевые слова: ценообразование опционов; полные рынки; неполные рынки; неарбитражные цены; 
стратегии хеджирования; управление рисками
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sation in line with its utility-weighted value 
minimisation. These articles lay a foundation 
of partial hedging with the help of Neyman-
Pearson lemma and Convex optimisation meth-
ods. Since recently, risk exposure is measured 
with the help of special measures widely used 
by market participants: Value-at-Risk (VaR) 
and Conditional Value-at-Risk (CVaR). The 
latter one is better known as Expected Short-
fall (ES) and was recommended in 2016 in The 
Market Risk Framework of Basel III —  an in-
ternational regulatory accord. These measures 
spark a particular interest in their application 
in the optimal partial-hedging problem. Mel-
nikov & Smirnov (2012) show that it is still 
possible to apply Neyman-Pearson lemma to 
CVaR optimisation. Recent papers Cong et al. 
(2014), Li and Xu (2013), Capinski (2014), and 
Godin (2015) demonstrate a growing interest in 
CVaR optimisation. We will demonstrate how 
the method of market completions becoming a 
useful tool when solving this type of problems 
on an incomplete market.

The rest of the paper is structured as follows: 
Section 2 provides necessary details regarding 
the model under consideration. With the un-
derstanding of the reasons for market structural 
incompleteness, we move on to the central part 
of the paper —  introducing the Method of Market 
Completions, which is discussed in Section 3 in 
line with its comparison to classical methodolo-
gies risk-neutral price interval estimation on 
the incomplete market. Section 4 elaborates on 
connections between market completions and 
some alternative methods used for handling 
market incompleteness. Finally, we briefly cover 
potential further steps towards solving famous 
partial hedging problems on the incomplete 
market in Section 5 and conclude the paper in 
Section 6.

2 Multivariate Diffusion Market Model
To demonstrate results  that  fol low, we 
will  work with the Standard Multidimen-
sional Market Model,  which is defined as 
( ) 1, ( , , , )n

t t t t TB S B S S ≤= … , where ( )t t TB ≤  repre-
sents the value process of a risk-free asset that 
is usually assumed to be a bank account and 

1( , , )n
t t t t TS S S ≤= …  is a n -dimensional vector 

process that describes the prices of n  risky as-
sets:

         
0

1

, 1t t t

k
i i i ij j
t t t t t

j

dB B r dt B

dS S dt dW
=

= =

 
= µ + σ 

 
∑   (1)

We will also call { }
,

ij
t t i j

Σ = σ  a volatility matrix 

of this model. Note that elements of a k -dimen-
sional vector ( )1, , kW W W= …  are independent 
standard Brownian motions. In general, one can 
define a multidimensional market model so that 
each risky asset price is governed by its own 
separate Brownian motions that are mutually 
correlated. However, it was shown, for example, 
in Dhaene et al. (2013), that both mentioned 
models are equivalent. Further in this paper, we 
will use the model with independent “underly-
ing” Brownian motions for illustration.

Let us call the ( )t T≤ -measurable process 
1( , , , )n

t t t t T≤π = β π … π  a portfolio (strategy). This 
process would reflect amounts of correspond-
ing assets possessed by an investor. Obviously, 
the capital or value of such a portfolio can be 
described as

  
1

.
n

i i
t t t t t

i

V B Sπ

=

= β + π∑   (2)

Note that not all strategies would be appro-
priate for the investor. Typically, the agent on 
the market has an initial budget ,x  and the 
natural constraint is that strategy value should 
not fall below some threshold at any moment t  
while strategy is in action. To accommodate this 
condition, denote the class of admissible port-
folios with initial capital x  as

( ) ( ){ }0: ,� 0��s.t.�� ,� .tx V x K V K t Tπ π= π = ∃ π ≥ ≥ − ∀ ≤

For simplicity, we might consider 0K = , 
meaning that the investor does not want his 
portfolio to have negative value at any moment 
until the maturity of the strategy.

Admissible strategy π  is called self-financing 
if the following conditions hold:

2 2

1 10

( ) ( )
T n k

i i i ij
t t t t

i j

dt
= =

 
π µ + π σ < ∞ 

 
∑ ∑∫

0
1 0

.
tn

i i
t s s

i

V V dSπ π

=

= + π∑∫  (3)
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In other words, strategy is called self-financ-
ing if its capital changes only due to changes 
in asset prices without additional injections or 
extractions of capital by the investor. We will 
denote the class of self-financing strategies with 
initial capital x  as ( )SF x .

Definition 0.1: Model is called arbitrage-free if 
there is no strategy ( )SF xπ ∈  such that it has zero 
initial cost of investment and leads to non-zero 
profit at maturity with positive probability:

0 0, ( 0) 0.TV P Vπ π= > >

It is well known that the market model is 
arbitrage-free if and only if there exists an 
equivalent martingale measure. It was shown 
in Karatzas and Shreve (2000) that for the Stand-
ard Multidimensional Market Model (1), the 
no-arbitrage condition could be summarised in 
the following proposition.

Proposition 0.1: If there exists a t t T( ) ≤ − pro-
gressively measurable process 1( , , )k

t t t T≤θ = θ … θ  
that satisfies

     
1

, 1, , , . .
k

ij j i
t t t

j

r i n P a s
=

σ θ = µ − = … −∑   (4)

and
              2

10

1
exp ( ) ,

2

T k
j
t

j

dt
=

  
 θ < ∞ 
   

∑∫   (5)

then the ( ),B S  the market is arbitrage free .
In other words, the market is arbitrage-free 

if system (4) has the solution.
Remark: The inverse Proposition 0 .1 is, in 

general, not true . Condition (4) should hold . How-
ever, Novikov condition (5) is sufficient but not a 
necessary one for uniform integrability of Girsa-
nov exponent and, consequently, for equivalence 
of corresponding risk-neutral measure .

Remark: Solution to the system (4): tθ  is, actu-
ally, the one to use for the famous Girsanov theo-
rem to switch to equivalent risk-neutral measure 
under which discounted risky assets in the model 
(1) become martingales .

Remark: Condition (4) can be equivalently 
written in a vector form:

t t tΣ θ = µ − r

where k
tθ ∈ ; , n

tµ ∈r  [ ]0,t T∀ ∈  .

Denoting 2

1

( )
k

i ij
t t

j =

σ = σ∑  , condition (5) can 
also be written as:

2

0

1
,

2

T
i
texp dt

  
 σ < ∞ 
   

∫  

Market Completeness
Definition 0.2: (Market completeness) The 

market is called complete if for any T − measur-
able payment function ( ) 0TH H= ω ≥ , such that 

[ ]H < ∞  there exists a strategy ( )SF xπ ∈  such 
that a.s.−

( ) .TV x Hπ =

Generally speaking, market incompleteness 
means that sigma algebra S

T  generated by risky 
assets is smaller than   on which contingent 
claims are defined, namely, S

T ⊂  . There might 
be different reasons for market incompleteness, 
including, but not limited to:

1. Structural: There are more sources of risks 
on the market than tradeable assets available. In 
such a case, it is natural to define sigma algebra 
for claims as the one generated by underlying 
sources of risk. In the case of model (1), it would 
be W

T .
2. Informational: Some investors may have 

more information regarding the asset price dy-
namics on the market than others. Typical cases 
of Large investor were described in Eyraud-Loisel 
(2019); Follmer and Schweizer (1991).

3. Due to complex parameters or restric-
tions: When parameters of the model become 
stochastic values (stochastic volatility, stochastic 
drift, etc.) which are not observable explicitly 
on the market.

In this paper, we will focus on the structural 
incompleteness of the market. Condition for 
such incompleteness in case of (1) was obtained 
in Karatzas and Shreve (2000) and Dhaene et al. 
(2013). We summarise them in the following 
theorem.

Theorem 1: Standard financial market   
is complete if and only if a number of available 
stocks n = k, where k is a dimension of underlying 
Brownian motion .

Consequently, to have a complete market, we 
need to have a proper, non-degenerate volatility 
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matrix tΣ  with n k= . As market completeness 
means the existence of a unique martingale 
measure * , the market is complete if system 
(4) possesses the unique solution k

tθ ∈ . Gir-
sanov exponential for transition to that unique 
martingale measure in the multidimensional 
case will be written in the following form:

 
*

2

1 10 0

1
exp ( ) .

2

T Tn n
i i i
t t t

i i

dP
dW dt

dP = =

  = − θ − θ 
  

∑ ∑∫ ∫   (6)

3 Completions of Diffusion Model  
and Option Pricing

We now move on and introduce the method of 
market completions which is the main focus of 
the present paper. First, we formalise the no-
tion of market completion.

As we already noted, markets, in reality, are 
barely complete, so it is reasonable to find a 
way to handle market incompleteness. In the 
previous chapter, we showed that, when speak-
ing about structural incompleteness, such in-
completeness for Standard Multidimensional 
Diffusion market model demonstrated through 
the volatility matrix which rank is not full. Or, 
roughly speaking, when the volatility matrix for 
tradeable assets has a rectangular shape with 
more columns (sources of risks represented by 
independent Brownian motions) than rows (risky 
assets).

In other words, to obtain a complete market 
that would correspond to the existing incom-
plete one, it is reasonable to add more “rows” 
into the volatility matrix under consideration. 
This idea forms a foundation of the method of 
market completions.

Obviously, “completing” assets should be 
independent of existing ones and among each 
other to solve the issue of a non-full rank vola-
tility matrix. Adding them, we obtain a “proper” 
volatility matrix that corresponds to some com-
plete market where known and well-developed 
methods can be applied.

Definitions of the Method of Market 
Completions
Assume the canonical market model (1) with 
n  risky assets for which n k< . As always, as-
set price dynamics is defined on measure space 
( ), ,PΩ   equipped with filtration   generated 

by k -dimensional Brownian motion. We will 
call assets that form this incomplete model 
primary assets or existing assets.

Denote cS  a ( )k n− − dimensional ( )t t T≤ −
adapted process 1( , , )c n k

t t t TS S S+
≤= …  with the 

same structure as primary assets:

1

, 1, , .
k

i i i ij j
t t t t t

j

dS S dt dW i n k
=

 
= µ + σ = + … 

 
∑

With the help of newly introduced assets, we 
can “fix” initially rectangular volatility matrix 
for a set of existing risky assets σ :

         ( )

�

1,1 1,

,1 ,

�

k risks

k
t t

n n k
t t

n k matrix

 
 σ σ
 Σ = = × 
 σ σ
  





  



  (7)

by adding k n−  auxiliary assets introduced:

    ( )

1,1 1,

,1 ,

1,1 1,

,1 ,

�

k
t t

n n k
t t

n n k
t t

k k k
t t

k k matrix
+ +

 σ σ
 
 
 σ σ
 

Σ = = × 
 σ σ 
 
 σ σ 



  





  



   (8)

Which helps us to arrive at a properly shaped 
volatility matrix Σ .

Definition 0.1: The ( )k n− − dimensional 
t t T( ) ≤ − adapted process c n 1 k

t t t TS (S , ,S )+
≤= …  is 

called a completion for the (B, S) market if the 
resulting volatility matrix Σ  has full rank for all 
t T.≤

Definition 0.2: A completion ( )c n 1 kS S ,...,S+=  
is called orthogonal if it satisfies:

[ ]� , �0,�for�all� 1,..., ; 1,..., ; 0,i j
t tS S i n j n k t T= = = + ∈

and

[ ]� , �0,�for�all�, 1,..., ; 0,i j
t tS S i j n k t T= = + ∈

Remark: Operation ,⋅ ⋅  is taken from the 
standard martingale theory and represents the 
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quadratic covariation of martingale parts of the 
processes .

Further in this paper, the set of orthogonal 
completions will be denoted as ort . We dem-
onstrate that any market completion can be 
transformed into an orthogonal form.

Lemma 1: For any completion cS ∈  of the 
( )B,S  market, it is possible to find an orthogonal 
completion c ortS .∈

Proof
It is enough to show that one can always 

construct orthogonal completion from non-
orthogonal assets. It can be accomplished, for ex-
ample, with the help of a famous Gram-Schmidt 
method. Our goal is to construct a process 

( )1, ,c n kS S S+= …  that satisfies the definition 
above.

To do it, we first define the stochastic loga-
rithm ( )i i

t t TH H ≤= :

1

ki
i i ij jt
t t t ti

t j

dS
dH dt dW

S =

= = µ + σ∑

Considering that i j≠ , if , 0i j
t tH H =  for all 

[ ]0,t T∈  then ,i j
t tS S . On the other hand, if row-

vectors i
tσ  and j

tσ  of volatility matrix are or-
thogonal for i j≠  for all [ ]0,t T∈ , then

0 0
10 0

10 0

10

,

,

t tk
i i il l j

s s
li j

t t t tk
j jl l
s s

l

t k
il jl
s s

l

H ds dW H

H H

ds dW

ds

=

=

=

+ µ + σ +

= =

+ µ + σ

σ σ=

∑∫ ∫

∑∫ ∫

∑∫

Consequently, to complete the proof, it is 
enough to show how to construct orthogonal 
row-vectors j

tσ  and it would imply orthogonal-
ity of assets.

To construct such vectors, we will use the 
Gram-Schmidt method of orthogonalisation for 

, 1, ,i
t i kσ = … :

1 1

1

1

,

,

t t

i
i i ij j
t t t t

j

−

=

σ = σ

σ = σ − α σ∑

f o r  2, ,i k= …  w i t h  
,

,

i j
ij t t
t j j

t t

σ σ
α =

σ σ
 f o r 

 
, 2, , ;i j k j i= … < . It is easy to see that obtained 

vectors are indeed orthogonal.
Let us also obtain the assets for completion. 

Defining ( )i i
t t TH H ≤=  for 1, ,i k n= + …  as

1

,
n

i i il j
t t t

l

dH dW
=

= µ + σ∑

with
1 1

1

1

,

,

t t

i
i i ij j
t t t t

j

−

=

µ = µ

µ = µ − α µ∑

for 2, ,i n= … . Final completion assets can be 
obtained from:

, 1,j j j
t t tdS S dH j k n= ∈ +

Remark: Orthogonalisation of drift terms for 
assets in the proof of lemma above plays a rather 
technical role . In such a form, one would get a 
much simpler solution for the (4) .

Working with the Set of Orthogonal 
Completions Instead of ELMM
Let us now demonstrate that working with the 
set of possible orthogonal completions would be 
equivalent to working with the set of equivalent 
local martingale measures (ELMM). As a reminder, 
an equivalent probability measure is called equiv-
alent (local) martingale measure if discounted 
risky asset price under such measure is a (local) 
martingale. We will demonstrate this in case of 
the problem of estimation of risk-neutral price 
interval for an initially incomplete market model.

It is well known that in incomplete markets, 
there are infinitely many ELMMs. Consequently, 
the risk-neutral price is not unique, and it is more 
reasonable to speak about the interval of initial fair 
prices. From the classical martingale approach, it 
is known that this interval could be described as:

inf , supP PT T

P PT T

f f
E E

B B∈ ∈

    
        

 



 

where Tf  —  contingent claim maturing at time 
T  and   —  set of all ELMMs.

We will demonstrate that fair price interval 
boundaries obtained with the help of the method 
of Market Completions coincide with ones from the 
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classical approach. It is straightforward that by “com-
pleting” our ( ),B S  the market we arrive at volatility 
matrix Σ  and force the system (4), or, in this case

,�� . .t t t r P a sΣ θ = µ − −

to have a unique solution θ .
For this completed market model, there should 

exist unique equivalent local martingale measure, 
parametrised with the help of solution 0{ }t t ≥θ . As 
each “completed” volatility matrix corresponds to par-
ticular market completion, there is a one-to-one cor-
respondence between the set of ELMM for the initial 
incomplete model and a set of orthogonal completions.

Lemma 2:
A . Each completion cS  uniquely defines a single 

ELMM in the incomplete market . Moreover, for the 
equivalent orthogonal complete market (obtained 
using the method of Lemma 1), such local mar-
tingale measure will be the same .

B . Each ELMM P  in the incomplete market (
P ∈ ) will be a unique ELMM in the associated com-
pleted market model . Therefore, the set   of ELMMs 
in the incomplete market is equivalent to the set c  
of unique ELMMs corresponding to each completion 
of the market .

This beautiful fact allows us to switch analysis 
from a very abstract class of Equivalent Martin-
gale measures to a class of “completing” assets. 
The latter is much easier to interpret and also 
impose different restrictions such as maximal 
asset volatility or no short selling on the market. 
For now, let us focus on fair price calculation.

Theorem 2: In the incomplete ( )B,S  market, 
assume that r 0=  and let i

tм �and ( )1,...,i i ik
t t tσ = σ σ  

be as defined in the proof of Lemma 1 for i 1, ,n= …
 . Let also W  be a standard k -dimensional Brown-
ian motion, with the first n  elements given by

                         
1

1 k
iji j

t t ti
t j

W W
=

= σ
σ ∑   (9)

for 1, ,i n= … , [ ]0,t T∈ , where ( )2

1

k
iji

t t
j =

σ = σ∑  . 

Then the upper hedging price can be expressed as

( )

( )

*

1 0

2

,� 1, ,

1 0

,

sup exp .
1

2

i

i
t

T

Tk i

ti
tiP

TTk i
i n k

i
ti

C f P

dW

E f W

dt

=

µ = + …
σ

=

=

  µ − − 
σ   =   

   µ−   σ     

∑∫

∑∫
 (10)

Change of Numeraire
In line with the Equivalent Martingale Measure 
approach, it is also worth mentioning the so-
called change of numeraire pricing approach. Its 
connection to the method of market completions 
was described in Guilan (1999). We provide the 
main steps below for informational purposes and 
to complete an overview of the method of Market 
Completions in application to pricing problem.

According to this approach, instead of trying to 
“re-weight” the probability of events by choosing 
some risk-neutral measure, one is searching for a 
special portfolio that could be used as discount-
ing factor instead of the classical bank account. 
However, the choice criteria for such discounting 
portfolio stays the same —  discounted strategy 
prices should be martingales.

More formally, the main goal is to find a port-
folio, which value process tX  is a strictly positive, 
continuous Ito process such that:

( )( )* .t t t t t t tdX X r dt dW u dt= + π σ +

Remark: Here, we will intentionally use nota-
tion u  instead of θ  just to distinguish approaches . 
However, they both represent the same idea of the 
price of the risk .

We want to use this portfolio as numeraire, 
such that risk-premiums with respect to this 
numeraire are constrained to be equal 0. In 
other words, the price process, discounted by a 
mentioned portfolio, will be local martingale 
w. r. t. “objective” probability P .

Theorem 3: Let ( ) ( )1
1T

t t t t tr
−

α = σ σ µ − , i . e ., 
.T

t t tu = σ ⋅α Consider the self-financing strategy 
1( )i n

t t i =π = α  in the risky assets . Denote by tM  the 
present value of this admissible strategy . Then 

tM  satisfies SDE:

         

( )( )
( )2

( )

( )

T
t t t t t t

T
t t t t t

dM M r dt u dW u dt

M r dt u dt u dW

= + + =

= + +      (11)

In the market with tM  as numeraire, investors  are  
 
risk-neutral. M-price process M t

t
t

S
S

M
=  of any asset  

 
tS  is a local martingale. We refer to it as a market 

numeraire.
Proposition 0.1: If m  is a strategy that cor-

responds to tM , then:
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• m  maximises the expected logarithm of terminal wealth
• m  is unique even in an incomplete market
• m  maximises the expected growth rate .
Details about mentioned properties can be found in Bajeux-Besnainou and Portait (1997).
Price of European contingent claim Tf  on the complete market, according to market numeraire 

approach could be found as:

      0 .P T

T

f
V

M

 
=   
    (12)

When one is working with the incomplete market case, it is obvious that there are several risk-neutral 
prices, as we can find several tα  that fit conditions of Theorem 2. Let us now apply the market com-
pletions approach and show that it can estimate option price boundaries on an incomplete market.

Let us consider some market completion cS . Then coefficients of these fictitious assets satisfy

  ( )( ) ( )
1

det det 0�and� , , .t t t t n

t t t t k n

b r I
u a t

a r I

−

−

σ σ −     
σ ρ = ≠ ρ =     ρ ρ −     

  (13)

with
( ) 2

0

, , , . .
T

u a t dt P a sρ < ∞ −∫  

On the completed market, one can define market numeraire as in (11):

( ) ( ) ( ) ( )( )2, , , , ( , , , , )T
t tdM a t M a t r dt u a t dt u a t dWρ = ρ + ρ + ρ 

In the completed market, we have the fair price of CC Tf  calculated similarly to (12):

( ) ( )0 , .
, ,

P TfV a
M a T

 
ρ =  ρ 



Let
( ) ( ) ( ) ( )1 0 2 0inf , , sup ,

a a
V V a V V a

ρ ρ
∈ ∈

ρ = ρ ρ = ρ
 

with ( ) 2

0

: �valued�progressively�measurable�processes�such�that , , �a.s.
T

k na u a t dt−
ρ

  = ρ < ∞ 
  

∫   . 

According to Guilan (1999), the following proposition holds.
Proposition 0.1: ( )1V ρ  and ( )2V ρ  are independent of ρ  .
Proposition 0.1 serves as another proof that it is enough to work with orthogonal completions 

only. Let us pick the orthogonal completion 0Tσρ = , T Iρρ = . For such ρ  and a ρ∈ :

( ) ( ) ( ) ( )
1

1
, .t n T T T

n k n
t k n

rI
u a rI a rI u u

a rI

−
−

− ψ
−

µ −σ   
ρ = = σ σσ µ − + ρ − = + ψ =   −ρ   

 (14)

And this uψ  would be used for the construction of market numeraire. Also, it follows that
0,σψ =

and
k na rI −= ρψ +

It means that the “non-arbitrage” vector uψ  on the completed market can be decomposed into 
u  from incomplete source market and ψ  which is completion dependent. If we define class 
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( ) [ ] 2

0

: �is� valued�progressively�measurable,� 0, 0, , . .�and , . . ,
T

k
t t tK t T a s dt a s

  σ = ψ ψ − σ ψ = ∀ ∈ ψ < ∞ 
  

∫    

then this class will be a parameter space for fictitious completions of the incomplete market. For 
each ( )Kψ ∈ σ  one can find a fair price in a completed market. It implies that option price bound-
aries will be

( )
( )

( ) ( ) ( )
( ) ( )sup or infT T

t t
KK

f f
J t M t M t

M T M Tψ ψψ∈ σψ∈ σ ψ ψ

   
=    

      
  

Remembering results from Guilan (1999), it is possible to show that these price boundaries 
coincide with boundaries from the classical approach:

( ) t t
T T

sup B or inf B
B B

P PT T
t t

PP

f f
V t

∈∈

   
=    

      

 





 


 

In other words, it was also shown that ( )J t  coincides with ( )V t . For more details, we also en-
courage the reader to carefully read Guilan (1999) research.

4 Completions in Context of Markov Factors, Dimension Reductions and Jumps
Connection to Markov Factor Model

Denote Girsanov exponential (6) as 
*

t

dP
Z

dP
= . It is known that this process is a solution for

0, 1t t t tdZ Z dW Z= θ =

and noting that �
i

i t
t i

t

µ
θ =

σ
from non-arbitrage condition t t tΣ θ = µ  ( 0r = ). Then equation (10) can 

be re-written in the following form:

( ) ( ) ( )* , sup .P
T T TC f P Z f W

θ
 = θ 

Moreover, as the first k  elements of the vector θ  are independent of the choice of comple-
tion and only depend on the correlations between existing assets, one can represent vector θ  
as ,t t ta cθ = +  , n

t ta c ∈  where the first one contains elements of tθ  calculated based on existing 
assets only. Namely:

1[ ,0] ,k T
t ta = θ …θ

1[0, ] .k n T
t tc += θ …θ

In this case, the equation for Girsanov exponential can be re-written as

0, 1t t t t t t tdZ Z a dW Z c dW Z= + =

Hence, market completions can be connected to the Markov Factor Model:

( ) ( ) ( )( )t t t t t

t t

dS D S Y dt Y dW

dB rB dt

= µ + σ

=

where tY  is ( )k n−  dimensional factor process, which does not contain any price processes
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( ) ( ) ,t Y t Y t tdY Y dt Y dW= µ + σ

Yµ  and Yσ  are vector functions of appropri-
ate dimensions. Or, more conveniently, to the 
Independent Factor Markov Model in which we 
assume that vector-valued Wiener process W  
could be split as

                            W
S

Y

W

W

 
=   

  (15)

such that SW  is n -dimensional and corre-
sponds to existing assets on the market and 

YW  is ( )k n−  dimensional and corresponds to 
factors. In this setting, Markov Factor Model 
can be written as:

( ) ( ) ( )( )
( ) ( )

,

,

.

S
t t t t t

Y
t Y t Y t t

t t

dS D S Y dt Y dW

dY Y dt Y dW

dB rB dt

= µ + σ

= µ + σ

=

It is possible to show that split (15) is similar 
to what was demonstrated in (9) with existing 
assets on the incomplete market being assigned, 
in fact, to iW  for [ ]1.. , 0,i n t T∈ ∈  which corre-
sponds to SW  and the rest of iW  being assigned 
to YW  as it only depends on ( )k n−  dimensional 
Brownian motion.

Remark: To briefly demonstrate the idea 
of transformation completions notation into 
Markov Factor model one. Assume that we per-
formed the transformation mentioned in (9) 
for the Standard Multidimensional Diffusion 
Market model. In this case, it is easy to see 
that the “completed” volatility matrix can be 
written as:

( )

( ) ( ) ( )

0

0

n n n k n

k n n k n k n

L

D

× × −

− × − × −

 
Σ =    


Where n nL ×  is a lower triangle matrix and 

( ) ( )k n k nD − × −  is a diagonal one . This leads to the 
natural split of vector W into two parts . Without 
loss of generality, one might assume first n elements 
of W to be denoted as S nW ∈  and the last (k-n) 
elements as Y k nW −∈  .

Dimension Reduction
Another natural approach to transform the 
volatility matrix into a proper one would be 

to “trim” it. Or somehow “regroup” underly-
ing Brownian motions in such a way that the 
reduced volatility matrix for them will have 
the proper shape. This idea was introduced by 
Zhang (2007).

For the introduced Standard Multidimen-
sional Diffusion Market Model, dynamics of each 
risky asset price is governed by the sum of inde-
pendent standard Brownian motions

0 0 0
0

1

, 1

, 1,..., .

t t t

k
i i i ij j
t t t t t

j

dS S r dt S

dS S dt dW i n
=

= =

 
= µ + σ = 

 
∑

However, as already mentioned, it is possible 
to write down an equivalent market model which 
would be governed by n  correlated Brownian 
motions instead of k  independent ones (see, 
e. g., Dhaene et al., 2013):

1

k ij
i jt
t ti

tj

dB dW
=

σ
=

σ∑
 

then

( ), 1, , .i i i i i
t t t t tdS S dt dB i n= µ + σ = … 

Obviously, obtained Brownian motions are 
not independent anymore, namely

1 .

i j ij
t t t

k ij lj
t tjil

t i l
t t

dB dB

=

= ρ

σ σ
ρ =

σ ⋅ σ
∑
   

In this model, we have n-dimensional Brown-
ian motion vector with correlated components 

( )1, , n
t t tB B B= … , the relationship between which 

can be described by matrix , 1..{ }il
t t i l n=Ψ = ρ . Notice 

that tΨ  is a non-singular, symmetric, and pos-
itive semi-definite. That implies the existence 
of matrix square-root tA :

, 1.., { }T ij
t t t t t i j nA A A a =Ψ = ⋅ =

Moreover, 1,...�, n
t tW W∃    independent, such 

that:

1 0

� � .
tn

i ij j
t s s

j

B a dW
=

=∑∫ 
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As a result, risky assets can be presented in 
a form

1

, 1, , .
n

i i i i ij j
t t t t t t

j

dS S dt a dW i n
=

 
= µ + σ = … 

 
∑ 

Оt t tAσ = ⋅

Where tΞ  is a diagonal matrix of iσ  and ma-
trix tA  depends on the particular decomposition 
of tΨ . According to Zhang (2007), one obtains 
the following model:

1

, 1, , .
n

i i i ij j
t t t t t

j

dS S dt dW i n
=

 
= µ + σ = … 

 
∑ 



( )1 1 1t t t t t nA r− −θ = ⋅Ξ ⋅ µ −

( ) ( ) ( )12 1 1
T T

t t t n t t t t nr r
−

θ = µ − ⋅ σ σ µ −

Completions for the Models with Jumps
The idea of adding auxiliary assets to the 

market to make it complete is not limited to 
the diffusion market model. There were also 
some developments towards a more general 
geometric Levy model in which asset price is 
governed by jumps

( ) 0) 0,

t t

t t t

t t t

dB rB dt

dS S dt dZ S

Z W X

−

=

= µ + >

= σ +

where tX  is a pure jump process and W  and 
X  are independent variables. It is well known 
that such Levy model is not complete even in a 
one-dimensional case as it includes jumps and 
Brownian motions as two independent sources 
of risk and only one asset to use. So instead 
of introducing the same structure auxiliary as-
sets, authors in Corcuera et al. (2005) enlarge 
the Levy market with the so-called i th-power-
jump assets defined as

( )

0

( ) , 2,i i
t s

s t

X X i
< ≤

= ∆ ≥∑

where s s sX X X −∆ = −  and ( )1
t tX X= . Processes 

( )iX  are again Levy processes. These power-
jump processes jump at the same time as the 
original tZ ; however, jump sizes are the i-th 
power of jumps of the original process. Note, 

that ( ) ( ), 2i i
t tX Z i= ≥ . It is convenient to re-write 

these assets in the compensated form

( ) ( ) ( ) ( ) , 1.i i i i
t t t t iY Z E Z Z m t i = − = − ≥ 

Enlargement of the model is then consisting 
in allowing to trade in assets:

( ) ( ), 2.i irt
t tH e Y i= ≥

With these assets available, it was demon-
strated in Corcuera et al. (2005) that any square-
integrable martingale tM  can be represented 
as follows:

( ) ( )
0

20

t
i i

t s s s s
i

M M h dZ h dY
∞

=

= + + ∑∫ 

where sh  and ( ), 2i
sh i ≥  are predictable pro-

cesses such that

( ) , 0tZ Z r t t= − µ − ≥

and

( )

2

0

2

0

| |

| | .

t

s

t
i

s

E h ds

E h ds

 
< ∞ 

  
 

< ∞ 
  

∫

∫

In other words, for any square-integrable 
contingent claim f  (non-negative, T  measur-
able random variable) we can set up a sequence 
of self-financing portfolios whose final values 
converge in ( )2 *L P . This portfolio will consist 
of a finite number of bonds, stocks and i th-
power-jump assets. It means that f  can be 
replicated, and the market is approximately 
complete.

This interesting result is important to con-
sider within the general idea of market com-
pletion because it offers to search for more 
specific auxiliary assets beyond just structure-
preserving ones discussed before. In the case of 
the Levy market model or another model with 
jumps, it might be more convenient to pick 
specific types of completing assets for each kind 
of risks presented. It is also useful in terms of 
interpretation of the auxiliary assets as power-
jump-assets are by nature instruments that 
give exposure to moments like variance (2nd-
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power-jump asset) or skewedness and kurtosis 
of distribution (3rd and 4th correspondingly). 
Assets of such type might be more conveni-
ent to introduce to real markets to fix their 
incompleteness.

5 Completions in Optimal  
Investment and Partial/Imperfect 

Hedging
Let us now elaborate more on the application 
of the method of Market Completions. In this 
section, we mainly focus on another big part 
of the area of the Mathematical Finance field —  
hedging of contingent claims with the major 
focus on partial hedging.

The idea of introducing fictitious assets to 
complete the market has already demonstrated 
potential on the side of partial hedging. First, it 
is reasonable to look at the classical approaches 
of partial hedging known for complete market 
and demonstrate potential towards implement-
ing market completions method for the incom-
plete case. As it is known, the most up-to-date 
risk measure approved in the Basel III accord 
is CVaR.

Definition 0.1: Value-at-Risk (VaR) measure 
of a loss X  can be defined as

( ) ( )inf :VaR X a P X aα = > ≤ α

Definition 0.2: Conditional Value-at-Risk 
(CVaR) measure of a loss X  can be defined as

( ) ( )
0

1
,CVaR X VaR x dx

α

α α=
α ∫

The problem of CVaR optimal hedging con-
tingent claim H  under budget constraint �x V≤   
therefore can be stated as

    
( )

( ),
, min

�

x
CVaR x

x V

α π

 π →

 ≤ 

  (16)

Inspired by Rockafellar and Urasev, Melnikov 
and Smirnov in Melnikov and Smirnov (2012) 
demonstrated that, introducing the special func-
tion of parameter z ∈

( )
( )

( ) ( )
,

1
min ( )

1 T
x

c z z H z V xπ +

π
 = + − − α



where ( ) ( )H z H z += −  —  modified contingent 
claim H , the problem of CVaR minimisation 
in case of European contingent claim will be 
equivalent to the following one:

( )
( )

( )
,

min min , .
z x

c z CVaR xα∈ π
= π



Consequently, solution of (16) can be decom-
posed into consequent optimisation by z  after 
solving “internal” problem:

               ( ) ( )( )р
TH z V x min

�

E

x V

+

π∈

  − →   
 ≤ 

   (17)

Alternatively, one can approach this prob-
lem from the perspective of optimal split into 
hedged/unhedged proportions of the claim 

( ) ( )fH f H R H= + , where ( )f H  describes the 
optimal hedged proportion of the claim. This 
method was offered by Cong et al. (2014).

Considering European type contingent claim, 
we expect to have a pay-off at maturity time 
T , so the total risk exposure of the investor is 
going to be

 ( ) ( ) ( )( ),rT
f fT X R X e f X= + Π   (18)

where ( )( )f XΠ  is some chosen pricing func-
tional for the hedged part of exposure.

Given the initial budget constraint, the in-
vestor is pursuing the goal of minimising risk 
measure of total exposure (18), given the re-
striction on the initial cost of hedging

( )( )
( )( ) 0

min

. .

f
f

CVaR T X

s t f X

∈Ω



 Π ≤ π

According to Cong et al. (2014), under particu-
lar assumptions, an explicit way of identifying 
the optimal hedged loss function is stated in 
the following theorem.

Theorem 4: Assume that pricing functional is 
linear for any time- t  contingent payout Z . Then, the 
optimal hedged loss function *

fg  is given by

( )* * *( ) ( )fg x x d x u+ += − − −

where ( )* *,d u  satisfies the following equations
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( )

( ) ( )
( )

*

*

0

*

*

*

u
rT

d

e X x dx

X u
X u

X d

−

 > = π



>
> = α⋅

>

∫






and   is a risk-neutral measure .
In both approaches, we arrive at some known 

problem that is well described for the complete 
market. Consequently, completion of the market 
can be helpful as it helps to “parametrise” a 
solution by the set of completing assets. There-
fore, choice of the proper completion by market 
conditions such as partial equilibrium Hu et 
al. (2005), Esscher measure or Minimal Rela-
tive Entropy Measure will be a powerful tool 
for solving CVaR optimisation problems on the 
incomplete market.

To demonstrate sensibility of usage of Method 
of Market Completions for solving stated par-
tial hedging problem (17), we provide existing 
techniques of partial hedging where Method of 
Market Completions has already demonstrated 
great potential or ready to be implemented.

Utility Maximisation
Let us start with the simple case when the goal 
of the investor is to finance a strategy that pro-
vides the greatest terminal wealth utility.

( )
( )

( )( )0 sup .T
x

v x E U V xπ

π∈
 ≡  

In Karatzas et al. (1991), authors have shown 
how to obtain such optimal solution with the 
help of convex duality methods. In the core of 
these methods lies Legendre-Fenchel transform 

( ) ( )( ) ( )( ) ( )
0

max ,
x

U y U x xy U I y yI y
>

≡ − = −  where 

:I + +→   is defined as the continuous decreas-
ing inverse function of ( )U x′  (details in Tou-
chette, n. d.).

The solution to this problem for the complete 
market was given explicitly and can be summa-
rised as the following theorem:

Theorem 5: For a given initial budget 0V 0,>

under the assumption that function

( ) ( )0 0
0 , 0,T T T Ty E Z I y Z y ≡ β ⋅ β ∞ ∀ 

the optimal terminal wealth of a strategy can 
be found as

 ( )( )0 0
0 0 0 �V

T TI V Zξ = β

where 0  is the inverse of the function 0  .

By introducing martingale 0
0 |x

t T T tX E Z ≡ β ξ   
wi th  stochast ic integral  representat ion 
 

0

0

� �
t

T
t s sX V dW= + ϕ∫  with tϕ ∈  and 

2

0

,
T

s dsϕ < ∞∫  

replicating portfolio for optimal terminal capital 
can be obtained as

 ( )11
( ) .T

t t t t
t

X
X

−π ≡ Σ ϕ + θ

Applying the Method of Market Completions 
for the case of incomplete markets, one can in-
troduce k n−  fictitious assets in addition to n  

existing assets on the incomplete market, driv-
en by the same k -dimensional Brownian motion 
as n  real tradeable assets. Then, the problem of 
utility maximisation can be solved in the com-
pleted market with fictitious assets, but there 
are infinitely many ways to introduce those fic-
titious assets.

The relative risk process can then be repre-
sented as �t t tθ ≡ θ + ν with 0T

t tθ ν = . That means 
completions could be parametrised by ν  which 
is square-integrable, t  adapted and d  valued 
process.

Denote also exponential local martingale:

( )2 2

0 0

1
exp � �

2

t t
T

t s s s sZ dW dsν
  ≡ − θ − θ + ν 
  

∫ ∫

and the function
( ) ( )0, .T T T Ty y E Z I y Zν ν

ν
 ∀ > ≡ β β 

Also ( )1K∀ν ∈ Σ  where 

( ) ( ) ( )1 , , 0K K y yνΣ ≡ ν ∈ Σ ∞ ∀ , define

( )( )x
T TI x Z ν

ν νξ ≡ β

where ν  again is the inverse function of ν
An attainable solution will give us value less 

or equal than that. If we find a strategy π  with 
initial capital x , which does not require the 
purchase of the artificial stocks and completion 

( )1t Kλ ∈ Σ  such that
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( )
( ) ( )sup ,x

T
x

E U V E Uπ
λ

π∈
   = ξ   

then, for sure, ( ),π λ  would be optimal. In 
Karatzas et al. (1991) the following theorem 
was proven.

Theorem 6: If we call
Optimality of π



: ( )  ( )T TEU V EU V xπ π 
≤ ∀π ∈  



Financiability of x
λξ :  ( )x∃π ∈  such that 

 x
TV π

λ= ξ
Least Favorability of λ :

( ) ( ) ( )1
x xEU EU Kλ νξ ≤ ξ ∀ν ∈ Σ

Parsimony of λ : ( )1,x
T TE Z x Kν

λ β ξ ≤ ∀ν ∈ Σ 

Then B D C⇔ ⇒  .
Furthermore, if B holds, then the portfolio π  

in B satisfies A.
This theorem provides a powerful instrument 

in verifying if one can build an optimal strategy 
without artificial assets in use, in other words, 
when 0λ =  will satisfy necessary criteria in 
Theorem 1. It was shown to be the case in Karat-
zas et al. (1991) for ( ) ( )lnU X X=  and, under 

some special conditions for ( ) X
U X

δ

=
δ

 where 

1, 0δ < δ ≠ . This edge can further be applied to 

more specific problems of partial hedging. We 
provide one example from Karatzas et al. (1991) 
to demonstrate the application of these condi-
tions to the classical logarithm utility function.

Example 1: Classical example of Utility func-
tion to consider is ( ) ( )U x ln x=  . For this function 
one has:

( ) ( )1 1
,y x

y xν ν= = 

and optimal terminal capital can be calculated as
.x

T T

x

Z
ν νξ =

β

One could check that completion with param-
eter 0λ =  satisfies D.

( )0
0

2

0

exp
1

2

T
T
s s

x
T T T

s

dW

E Z x E x K

ds

ν

  
 − ν − 
   β ξ = ⋅ ≤ ∀ν ∈ Σ   
  − ν  
   

∫

∫  

as the process under expectation is a su-
permartingale. It means that investor would 
not use auxiliary stocks to form an optimal 
portfolio even for hedging purposes.

Efficient Hedging
One of such problems emerges when given an 
amount of initial capital 0v  investor’s goal is 
to find the admissible strategy with terminal 
wealth TV  such that

           
        

( )(
*

*
0

[ ) min

sup

T

T
P

U H V

V v

+

∈

 − = 
 ≤  






  (19)

Föllmer and Leukert demonstrated in Föllmer 
and Leukert (2000) that such problem can also be 
solved with the help of convex duality methods, 
similar to utility maximisation, as one can define 
state-dependent utility function

( ) ( )( ) ( )( ), ( ) .u x U H U H x +ω = ω − ω −

And then re-write (19) in the following form

( )
*

*
0

, max

sup

T

T
P

u V

V v
∈

  ω = 
 ≤  






which can be solved explicitly on the complete 
market.

For each [ ]*z E H≤  there is a unique terminal 
wealth Z  such that

( ) ( ) [ ]{ }*,. sup ,. 0 � ,� � .E U Z E U Z Z H E Z z   = ≤ ≤ ≤  


It takes the form

( ) ( )( ) ( )0� � , �TZ I y z Z H= ω ω ∧ ω

where ( )y z  is the solution of

( ) ( )( ) ( )* 0 ,TE I y z Z H z ω ω ∧ ω = 

Obviously, such a reduction provides strong 
evidence that one can move on in the direc-
tion of Theorem 1 to elaborate on mentioned 
criteria and generalise them for this category 
of problems.
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Quantile Hedging
An important case of efficient hedging is 
when we focus on minimising the expected 
size of the shortfall, or ( )U X X= . This par-
ticular case is extremely useful for solving 
(17) to find the solution of CVaR optimisation 
problem (16).

Apart from applying similar convex duality 
methods Spivak and Cvitanic (1999), one can 
use an alternative approach, which involves the 
famous Neyman-Pearson lemma. According to 
Föllmer and Leukert (1999), it is enough to solve 
the equivalent problem

                 

[ ]
* *0

*

max

,��

dQ

V
dQ P P

E H

 ϕ →



ϕ ≤ ∀ ∈


∫

∫


  (20)

where

[ ] [ ]
*

* *
, .

dQ H dQ H

dP E H dP E H
= =

The solution to problems of such a type was 
demonstrated in Föllmer and Leukert (1999) and 
can be found as a perfect hedge for a modified 
claim H H= ϕ

  where

* *

� � dP dP
a a

dP dP

I I
> =

ϕ = + γ
 

 

*

*inf 0 | dP
a

dP

a a E HI V
>

  
= ≥ ≤      



  

                          
*

*

*

*

dP
a

dP

dP
a

dP

V E HI

E HI

>

=

 
−  

  γ =
 
 
  







   (21)

It is easy to notice that the solution is based 
on finding maximal successful hedging set, which  
 
can be represented as 

*

dP
Const H

dP

 > × 
 

, where 

H  is some claim. With the reasonable assump-
tion that claim H  depends on some existing 
asset i

TS  and using the following representation 
on the complete market

( )1/2
*

1
exp

2

i
T i iT

T T
T

dP
W T S

dP

ϕ = θ − θ = × Λ 
 



where 
2

i
i rµ −ϕ =

θ 

, successful hedging set can be 

found in the form of

( ) ( )
1

ii i i
T TS Const H Sϕ

  × Λ > × 
  

which, in the case of one dimension, coincides 
with the solution described in Melnikov et al. 
(2001).

In an incomplete market case, we again add 
some auxiliary assets into consideration. As was 
demonstrated above, one can develop innova-
tive Brownian Motion, under which, last ( )k n−  
coefficients of each row iσ  for existing assets in 
the “completed” volatility matrix will be equal 0. 
Then, using representation (6), if claim H  still 
depends on existing assets only, it is possible 
to show that

( ){ }1 1
*

T
asset completion

T

dP
a H Z Z a H asset

dP
− −  > ⋅ = ⋅ > ⋅ 

  

Consequently, it is reasonable to develop a 
general theory of applying Method of Market 
Completions to the construction of a success-
ful hedging set. It helps reduce the Quantile 
Hedging problem to operations with existing 
assets only.

6 Conclusion
In this paper Method of Market Completions is 
introduced as a dual approach for operating on 
incomplete markets. It was demonstrated that 
in the case of pricing problem, this approach 
leads to the same solution as classical ones. As 
the method of market completions offers an al-
ternative way of working with standard prob-
lems of mathematical finance in incomplete 
markets, it was shown how to reduce such 
problems to the known version in the complete 
market.

In line with it, alternative ways of handling 
market incompleteness were observed with their 
connection to the method of market comple-
tions and possible future developments and 
improvements of the presented method. Further 
enhancements of this method consist in finding 
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a way for reverse-engineering parameters of 
the completion required utilising BSDE, partial 
equilibrium market condition or using another 
asset class like bonds or insurance contracts. On 

the other hand, it will also be beneficial to find 
a way of choosing the most suitable completion 
according to market conditions and investors 
goals.
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