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ABSTRACT
This paper proposes a method of comparing the prices of European options, based on the use of probabilistic 
metrics, with respect to two models of price dynamics: Bachelier and Samuelson. in contrast to other studies 
on the subject, we consider two classes of options: European options with a Lipschitz continuous payout 
function and European options with a bounded payout function. For these classes, the following suitable 
probability metrics are chosen: the Fortet-Maurier metric, the total variation metric, and the Kolmogorov 
metric. it is proved that their computation can be reduced to computation of the Lambert in case of the 
Fortet-Mourier metric, and to the solution of a nonlinear equation in other cases. A statistical estimation 
of the model parameters in the modern oil market gives the order of magnitude of the error, including the 
magnitude of sensitivity of the option price, to the change in the volatility.
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Близость моделей Башелье и Самуэльсона 
для различных метрик
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АННОТАЦИЯ
В статье представлен метод сравнения цен европейских опционов, основанный на использовании веро-
ятностных метрик, применительно к двум моделям динамики цен —  Башелье и Самуэльсона. В отличие 
от других работ на данную тему, рассматриваются классы опционов, а именно европейские опционы 
с функцией выплат, удовлетворяющих условию Липшица, а также европейские опционы с ограниченной 
функцией выплат. Для данных классов выбираются подходящие вероятностные метрики: метрика Фор-
те-Мурье, метрика полной вариации и метрика Колмогорова. Мы доказали, что их вычисление сводится 
к вычислению W -функции Ламберта в случае метрики Форте-Мурье и к решению некоторого нелиней-
ного уравнения в остальных случаях. Статистическая оценка параметров моделей на современном не-
фтяном рынке указывает на порядок величины погрешности, включая величину чувствительности цены 
опциона к изменению показателя волатильности.
Ключевые слова: модель Башелье; модель Самуэльсона; ценообразование опционов; вероятностные ме-
трики; чувствительность; волатильность
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1 Introduction
Description of Models and Motivation 
for the Study
In this study, the simplest continuous-time fi-
nancial market models are considered. The 
movement of prices [ ]0,( )t t TX ∈  of an asset in the 
market is described in the framework of the 
Bachelier model (Bachelier, 1900), using the sto-
chastic Brownian motion process:

( ) [ ] ( )0 1 , 0, ,# 1B
t B tX X t W t T= + α + σ ∈

w h e r e  [ ]0,( )t t TW ∈  i s  t h e  W i e n e r  p r o ce s s , 
, 0Bα ∈ σ > .

The model proposed by Samuelson1 (1965) 
uses geometric (economic) Brownian motion to 
describe the price dynamics:

[ ] ( )0exp , 0, ,# 2S
t S tX X t W t T= γ + σ ∈  

where , 0Sγ ∈ σ > .
In both models, the volatilities Bσ  and Sσ  are 

chosen so that they have the dimension 1/2[time]−  
and the linear trend α  and exponential trend γ  
have the dimension 1[time]− .

Hereafter, the prices considered are assumed 
to be discounted, which is equivalent to a zero 
risk-free interest rate.

The Black-Scholes (1973) and Merton (1973) 
option pricing model is based on the Samuelson 
model (describing price dynamics in the market) 
and is the most popular in practice. Similarly, 
for the options on futures Black’s (1976) pricing 
model is based on Samuelson’s model.

Bachelier (1900) not only described the dy-
namics of prices but also built a model of option 
pricing. However, Samuelson (1965) noted that 
the stock prices should not be negative; thus, 
Bachelier’s model has not been widely used in 
practice. Nevertheless, for short-term options, 
the Bachelier model can better fit the real market 
data than the Black-Scholes–Samuelson model 
(e. g., Versluis (2006)). Note that the Bachelier 
model and its modifications have been applied 
to modern works on mathematical finance. For 
example, the Bachelier model and its modification 
with an absorption screen was used by Glazyrina 
and Melnikov (2020) for pricing life insurance 
policies with an invested stock index option, and 
Melnikov and Wan (2021) compared this model 
with the Bachelier and Samuelson models.

An unprecedented event occurred on April 20, 
2020, when West Texas Intermediate (WTI) crude 
oil futures prices (the benchmark for U.S. crude oil 
prices) reached negative levels (see CFTC Interim 
Staff Report, Trading in NYMEX WTI Crude Oil 
Futures Contract Leading up to, on, and around 
April 20, 2020). Fuel supply has far exceeded the 
demand due to the coronavirus pandemic. Due 
to overproduction, the storage tanks were so full 
that it would have been difficult to find room for 
new oil if the future contracts had been brought 
to delivery. Because the May contract expired on 
April 21, market participants with long positions 
did not want to take delivery of oil (which no one 
needed at that point in time) and incur storage 
costs and opted to lock in such large losses by 
entering into offset deals that the prices turned 
negative. As of April 22, 2020, the Chicago Mer-
cantile Exchange (CME) switched to the Bachelier 
pricing model for the options on futures for several 
energy commodities2 to account for the possibility 
of negative prices.

In this regard, it is interesting to compare the 
prices of derivative financial instruments obtained 
using the above-described models. Schachermayer 
and Teichmann (2005) proved the following esti-
mation for the price difference of a call option “at 
the money” with an expiration at the moment T:

300 ( ) .
12 2

B S

X
C C T≤ − ≤ σ

π

Here, B Sσ = σ = σ  and ,B SC C  denote the op-
tion prices in the Bachelier and Samuelson mod-
els, respectively. Both processes (1) and (2) are 
diffusion processes; thus, the Bachelier and Sam-
uelson models are clearly close in case of small 
(and equal) values of integral volatility 

B ST T Tσ = σ = σ . Meanwhile, the Samuelson 
model is close3 to the Bachelier model with  
 
a linear trend 21

2
γ + σ .

Grunspan (2011) obtained an asymptotic re-
lation between implicit volatilities for normal 
and lognormal models at 0T →  and compared 
the sensitivities (greeks) for call options. The 
differences in option pricing obtained using the 
Bachelier and Samuelson models are detailed in 
Thomson (2016).

Another question is for what values of B Tσ  
and S Tσ  models can be considered close? We 
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are interested in the problem of comparing the 
prices of a European option with an arbitrary pay-
off function ( )f ⋅  that belongs to a specific class 
of functions and depends only on the price TX  
of the underlying asset at the time of expiration 
T . For each of the models (1) and (2), there ex-
ists a single equivalent risk-neutral (martingale) 
measure. The option price ( ),P f T  with payout 
function ( )f ⋅  and time to expiration T  is deter-
mined as the mathematical expectation relative 
to the corresponding risk-neutral measure4:

( ) ( )*, .TP f T f X= 

The processes given by relations (1) and (2) are 
martingales if and only if

( )
2

0, .# 3
2
Sσ

α = γ = −

Therefore, the difference between the option 
prices ( ),BP f T  and ( ),SP f T  in the Bachelier and 
Samuelson models can be expressed as follows:

( ) ( ) ( ) ( ) ( ), , ,# 4B S
B S T TP f T P f T Ef X Ef X− = −

where the process parameters are chosen ac-
cording to (3).

The estimate for the right part of (4) can 
be obtained by calculating the distance in the 
Fortet–Mourier metric between the distribu-
tions of random variables ,B S

T TX X  in case of 
Lipschitz continuity of the payoff function 

( )f ⋅ . If the payout function is discontinuous 
but bounded (e. g., as in the case of a binary 
option), the total variation metric can be used 
for the estimation. However, the Kolmogorov 
metric can also be used to compare the binary 
option prices; the closeness of distributions 
under the total variation metric is a very strong 
assumption, and hence, the corresponding es-
timate is rougher (but applicable to a broader 
class of payout functions).

To compare the Bachelier and Samuelson 
models, it is interesting to find the optimal rela-
tion between the volatilities ,B Sσ σ . Optimality 
is understood as the dependence between these 
indicators that arises when minimizing the dis-
tance between B

TX  and S
TX  in (one or another) 

probability metric ( ),d ⋅ ⋅ .
In this paper, the Fortet–Mourier metric be-

tween random variables B
TX  and S

TX  is calcu-

lated and the formulae for the total variation 
metric and Kolmogorov metric are obtained. 
The dependence of volatilities that minimizes 
the Fortet-Mourier metric between B

TX  and S
TX

. Using the probability metrics, the estimates 
for (4) are obtained to analyze the effect of 
model choice on option price. By constructing 
confidence intervals for volatilities in the oil 
market for standard and binary call and put 
options, we evaluate the error resulting from 
the approximate measurement of the volatility.

Notation and Definitions
Let S  be a metric space with metric ( ),d ⋅ ⋅  and 
let us denote by ( )S  the set of all signed 
measures on S  and ( ) ( )S S⊂   as the set of 
all probability measures on S  equipped with 
Borel σ -algebra.

Definition 1. Let us define a semi-norm in the 
space ( )Lip S  of the Lipschitz continuous on S  func-
tions as follows:

 
( ) ( )

( ) ( ) ( )
,

sup , .
,Lip

x y

f x f y
f f Lip S

d x y

−
= ⋅ ∈ 

Definition 2. In the space ( )B S  of bounded 
measurable functions on S , let us define the norm

( ) ( ) ( )sup , .B
x S

f f x f B S
∈

= ⋅ ∈ 

Definition 3. For S =   in the space ( )St   of 
piecewise constant functions with finite number of 
jumps 1, , m∆ … ∆ , we define a semi-norm

( ) ( )
1

| |, .
m

St j
j

f f St
=

= ∆ ⋅ ∈∑  

The introduced semi-norm is a norm in space 
( ) /St   .
Definition 4. By the coupling of two random 

variables X  и Y , we call5 a pair ( ),X Y′ ′ for which 
the following is true ' ',

d d

X X Y Y= =  . For the monotone 
coupling of real random variables X  и Y  with dis-
tribution functions ( ) ( ),X YF F⋅ ⋅ , we call a pair of

( ) ( )( ) ( )1 1, , 0,1 ,X YF U F U U− − ∼ 

where XF  is the distribution function of a random 
variable X , which is defined as

( ) ( ),XF x X x= <
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and 1F −  is the generalized inverse function of the 
monotonically non-decreasing left-continuous 
function, defined via the relation6

( ) ( ){ }
( ){ } ( )

1 inf :

sup : , 0,1 .

F y x F x y

x F x y y

− = ∈ ≥ =

= ∈ < ∈





Let ( ),δ ⋅ ⋅  be a metric in the space of random 
variables taking values in S , defined on pairs 
of ( ),X Y  of random variables, with a common 
probability space.

Definition 5. The minimal metric with respect 
to ( ),δ ⋅ ⋅  is the metric

 ( ) ( ) ' ', inf , : , .
d d

X Y X Y X X Y Y= = δ = δ


′ 


′

Note that ( )� ,δ ⋅ ⋅  is therefore a metric in the 
space of distributions and does not depend on 
the joint distribution of X  and Y .

Let   be a set of measurable functions 
:f S →  . Then, for each signed measure µ  on 

S  such that | |
S

f dµ < ∞∫  for all f ∈ , the fol-

lowing semi-norm can be defined:

* sup .
f

S

fd
∈

µ = µ∫ 


Denote ( ){ }*:S= µ ∈ µ < ∞    .
Definition 6. We can say that on   the dual 

semimetric if

( ) *, .d µ ν = µ − ν  

In particular, for the probabilistic measures 
( )S= ∩    ,

( ) ( ) ( ), sup .
f

d X Y f X f Y
∈

= − 


Let ( ),S   be a measurable space.
Definition 7. The total variation norm for a 

signed measure µ  is defined as

( )sup : , 1 .TV B

S

fd f B S f
  µ = µ ∈ ≤ 
  
∫   

Definition 8. A total variation metric is a prob-
ability metric

( )1 2 1 2, .TV TVd Q Q Q Q= − 

If distributions 1 2,Q Q  are absolutely continu-
ous with respect to the measure µ  and have Ra-
don–Nikodym densities ( ) ( )1 2,p p⋅ ⋅ , then

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2

,

2 ( ) ,# 5

TV

S

S

d Q Q p x p x dx

p x p x dx+

= − µ =

= − µ

∫

∫

where ( )max ,0a a+ = .
Definition 9. If S =  , then the Kolmogorov 

metric7 is
( ) ( ) ( ), sup .K X Y

x
d X Y F x F x

∈
= −



Definition 10. The Fortet-Mourier metric8 is 
the probability metric

( ) ( ) ( )
1

, sup .
Lip

FM
f

d X Y f X f Y
≤

= −
 

 

There is also an equivalent representation of 
this metric:

  ( ) ( ) ( )' ', min , : , .# 6
d d

FMd X Y d X Y X X Y Y= = ′ =  
 

′

The proof of equivalence of the definitions 
can be found in Rachev, Klebanov, Stoyanov, and 
Fabozzi (2013).

It has been shown (e. g., Bogachev (2007)) that 
in case of S =  , the minimum value in (6) is at-
tained on the monotone coupling

( ) ( )( ) ( )1 1, , 0,1 .X YF U F U U− − ∼ 

Remark 1. The Fortet-Mourier metric allows 
one to derive an upper estimate of (4) in the case of 
Lipschitz continuity of ( )f ⋅ , for example, if ( )f ⋅  is 
piecewise linear (which corresponds to the portfolio 
of call and put options) . It is also possible to estimate 
(4) by using the total variation metric if the func-
tion ( )f ⋅  is bounded . Even if the payout function is 
neither Lipschitz continuous nor bounded (e . g ., if it 
corresponds to a portfolio of binary and call options), 
it can most likely be represented as a sum of ones, 
as in practice, the payout functions usually do not 
grow faster than linear ones . The Kolmogorov metric 
provides a more accurate estimate than the total 
variation metric; however, it is only applicable to 
piecewise constant payout functions corresponding 
to a portfolio composed of binary options .

Definition 11. Lambert W  function is a com-
plex-valued function : ,W →   defined as a solu-
tion of the equation ( ) ( ), .W zz W z e z= ∈
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( )W ⋅  cannot be expressed in elementary func-
tions. We are only interested in its two branches, 

( ) ( )0 1,W z W z− , at ( )1,0z e−∈ −  (Fig. 1), which cor-
respond to the real solutions of the equation

( )1, ,0 .xxe z z e−= ∈ −

The definition and notation are taken from 
Corless, Gonnet, Hare, Jeffrey, and Knuth (1996).

2 Main Results
Let us show how one can obtain the estimates 

for (4) by using the introduced probability metrics. 
Let, as mentioned above, ( ) ( ), , ,B SP f T P f T  stand 
for the prices of European options with payoff 
function ( )f ⋅  and time to expiration T  in the 
Bachelier and Samuelson models, respectively. Then, the following estimates are true:

If ( ) ( )f Lip⋅ ∈  , then

( ) ( ) ( ) ( ), , , .# 7B S
B S Lip FM T TP f T P f T f d X X− ≤ 

If ( ) ( )f B⋅ ∈  , then

( ) ( ) ( ) ( ), , , .# 8B S
B S B TV T TP f T P f T f d X X− ≤ 

If ( ) ( )f St⋅ ∈  , then

( ) ( ) ( ) ( ), , , .# 9B S
B S St K T TP f T P f T f d X X− ≤ 

Indeed, the price of a European option is defined in the Bachelier and Samuelson models as a 
mathematical expectation of the payout function relative to the risk-neutral measure:

( ) ( ) ( ) ( ), , , ,B S
B T S TP f T f X P f T f X= = 

where the processes ,B S
t tX X  are martingales, i. e., 

2

0,
2
Sσ

α = γ = − .

Then,
( ) ( ) ( ) ( )( ), , .B S

B S T TP f T P f T f X f X− = −

1. In case of Lipschitz continuity of ( )f ⋅ ,

( ) ( ) ( ) ( ) ( )
1

, , sup ,
Lip

B S B S
B S Lip T T Lip FM T T

g
P f T P f T f g X g X f d X X

≤
− ≤ − =

 

    

2. If ( )f ⋅  is bounded, then

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

, ,

, .

B S
T T

B S
T T

B S X X

B S
B B TV T TX X

P f T P f T f x p x p x dx

f p x p x dx f d X X

− = − ≤

≤ − =

∫

∫   





Here, ( ) ( ),B S
T TX X

p p⋅ ⋅  denote the densities of random variables ,B S
T TX X .

 
Figure 1. Real-valued branches 

of Lambert W -function

Source: The authors.
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3. The function ( ) ( )f St⋅ ∈   can be represented as

( ) ( ) ( ) ( )
1

, .
j

m

T j T j j x K
j

f X f f X f x >
=

= −∞ + = ∆∑ 

For each function, ( )jf ⋅  it is true that

( ) ( ) ( ) ( ) ( ), , , .S B
T T

B S
B j S j j j j j K T TX X

P f T P f T F K F K d X X− = ∆ − ≤ ∆

( ) ( ) ( ) ( ) ( )
1 1

, , | , , | ,
m m

B S
B S B j S j j K T T

j j

P f T P f T P f T P f T d X X
= =

− ≤ − ≤ ∆ =∑ ∑
( ), .B S

St K T Tf d X X= 

Note 2: If the payout function can be represented as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , , ,# 10f f f f f Lip f B f St⋅ = ⋅ + ⋅ + ⋅ ⋅ ∈ ⋅ ∈ ⋅ ∈  

then

( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , , , .# 11B S B S B S
B S Lip FM T T B TV T T St K T TP f T P f T f d X X f d X X f d X X− ≤ + +     

The representation (10) is obviously not unique . Moreover, ( )3f ⋅  is unnecessary as soon as any piecewise 
constant function with a finite number of jumps is bounded. Nevertheless, a proper choice of functions 

( ) ( )1 2,f f⋅ ⋅  и  ( )3f ⋅  in expansion (10) can significantly improve the estimate (11).
The following statements provide methods of calculation of the metrics appearing in (7)–(9).
Finding ( ),B S

FM t td X X  is reduced to the calculation of the metric between random variables 
( )2

1 1,ξ ∼ µ σ  and ( )2
2 2,η ∼ µ σ  that have normal and lognormal distributions. The value of this 

metric is given by the following theorem.

Theorem 1
Let ( ) ( )2 2

1 1 2 2, , ,ξ ∼ µ σ η ∼ µ σ   . Then, under the condition ( )2 2
2 1

1 1

ln 1 0,# *
 σ σ

+ µ − µ + < σ σ 
,

the metric can be found with the formula

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

1 2 1 1 1 2

2
2

2 2 2 1 2

, 2 1 2

# 12
exp 1 2 ,

2

FMd k k k k

k k

 ξ η = µ Φ − Φ − + σ φ − φ + 
 σ  + µ + − Φ − σ − Φ − σ   
 

where ( )Φ ⋅  is a cumulative distribution function of the standard normal distribution, ( )φ ⋅  is the density 
of the standard normal distribution, and 1k  and 2k  are equal to

( )
1 2 2

1 0 2 1
1 2 1 1

1 2 2
2 1 2 1

1 2 1 1

1
exp ,

# 13
1

exp .

k W

k W−

  µ σ σ
= − − − µ − µ  σ σ σ σ  

  µ σ σ
= − − − µ − µ  σ σ σ σ  

If condition (*) is not satisfied, then

( ) ( )
2
2

1 2, exp .# 14
2FMd

 σ
ξ η = −µ + µ + 

 
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Corollary 1. When trends and volatilities are chosen such that processes (1) and (2) are martingales 
(i. e., relation (3) is satisfied), the formula for the metric between distributions of the random variables 

,B S
t tX X  can be expressed as

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 2 1 2 2 1 2

2 1

, 2 (

),# 15

B S
FM t td X X X k k k k

k k

   = Φ − Φ − Φ − σ − Φ − σ   
 − φ − φ 

where 1 2,B St tσ = σ σ = σ  denote the integral volatilities, and 1 2,k k  are calculated as follows:

( )

2
2 2 2

1 0
1 2 1 1

2
2 2 2

2 1
1 2 1 1

1 1
exp ,

2
# 16

1 1
exp .

2

k W

k W−

  σ σ σ
= − − − − −  σ σ σ σ  

  σ σ σ
= − − − − −  σ σ σ σ  

The following theorem answers the question about the optimal relation between Bσ  and Sσ  

minimize the Fortet–Mourier metric in the risk-neutral case.

Theorem 2
For fixed 2σ , the minimum of expression (15) is attained at

2
2

2
2

* 2
1 2

2

1
.

ln 1 1
2

e

e

−σ

−σ

σ −
σ =

σ  + + − 

For fixed 1σ , the minimum in (15) is attained at *
2,σ which is a solution of the equation 1 2 22 ,k k+ = σ  

where 1 2,k k  are determined from (16) .
The calculation of the total variation metric and the Kolmogorov metric between B

TX  and S
TX  can 

be reduced to solving a nonlinear equation. This result is formulated in Theorem 3.

Theorem 3
L ( ) ( )2 2

1 1 2 2, , ,ξ ∼ µ σ η ∼ µ σ  , and 
2
2

1 21,
2

σ
µ = µ = −  . Then,

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 3 3 2 2, 2 ,# 17TVd F x F x F x F x F x F xξ η ξ η ξ η
 ξ η = − + − − − 

( ) ( ) ( ) ( )
1,2,3

, max ,# 18K i i
i

d F x F xξ η=
ξ η = −

where 1 2 3x x x≤ ≤  are the roots of the equation

( ) ( )
2 2

2 2 2 2 21 1 2 2
1 1

2 1

2 ( ) (ln ) 3 ln 1 2 ln 0,# 19
4

x x x x
 σ σ σ σ

− − − σ + − − σ = σ σ 

and the cumulative distribution functions have the form ( ) ( ) ( ) 21
0

1 2

ln
, .x

xx
F x F xξ η ≥

 − µ − µ
= Φ = Φ  σ σ   



Corollary 2. According to Definitions 8 and 9,

( ) ( )
0 0 0 0

, , , , , .
B S B S

B S B ST T T T
TV T T TV K T T K

X X X X
d X X d d X X d

X X X X

   
= =      
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In the risk-neutral case, ( )
2

2 2

0 0

1, , , ,
2

B S
ST T

S S

TX X
T T

X X

 σ
∼ σ ∼ − σ  
   and the metrics are calculated by 

Theorem 3 by taking into account that 1 2,B ST Tσ = σ σ = σ  .

3 Proofs of Theorems
Proof of Theorem 1
The cumulative distribution functions of ,ξ η  are

( ) ( ) ( ) 21
0

1 2

ln
, .x

xx
F x F xξ η ≥

 − µ − µ
= Φ = Φ  σ σ   



Then, their inverse functions can be expressed as

( ) ( ) ( ) ( )1
2 21 1 1

1 1 , .uF u u F u e
−µ +σ Φ− − −

ξ η= µ + σ Φ =

As the minimum in (6) is attained on the monotone coupling, we obtain

( ) ( ) ( ) ( )2 2 1
1 1, , 0,1 .Z

FMd Z e Z Uµ +σ −ξ η = µ + σ − = Φ ∼ 

The expectation is considered here with respect to the measure Z  induced by a random variable Z .
Let us divide the space of elementary events into three disjoint sets:

{ }2 2
1 1 1: ,ZD Z eµ +σ= ω µ + σ >

{ }2 2
2 1 1: ,ZD Z eµ +σ= ω µ + σ <

{ }2 2
3 1 1: .ZD Z eµ +σ= ω µ + σ =

As ( )3 0,D =  ( )1 2 1 ,D D holds=∪  and therefore,

( ) ( ) ( )2 2 2 2

1 21 1 1 1, .Z Z
FM D Dd Z e e Zµ +σ µ +σ   ξ η = µ + σ − + − µ + σ      

By definition, the set 1D  is either empty or comprises those ω  for which ( )1 2,Z k k∈  for some real 
1 2,k k as the graph of a linear function can lie above the graph of an exponent only within a finite 

interval.
In case of 1D = ∅ , considering that the expectation of the lognormal distribution with parameters 

2
2 2,µ σ  is equal to 

2
2

2exp
2

 σ
µ + 

 
, we obtain

( ) ( ) ( )2 2

2
2

1 1 1 2, exp .# 20
2

Z
FMd E e Zµ +σ  σ ξ η = − µ + σ = −µ + µ +  

 

If ( ){ }1 1 2: ,D Z k k= ω ∈ , then as it is much more convenient to work with 1D  than with 2D , we 
eliminate the indicator 

2D . Using the formula

2 1D DX X X= −    

for ( )2 2
1 1

ZX e Zµ +σ= − µ + σ , we get

( ) ( ) ( )2 2

1

2
2

1 2 1 1, exp 2 .# 21
2

Z
FM Dd E e Zµ +σ σ  ξ η = −µ + µ + − − µ + σ   

 

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As ( ) ( ) ( )1 2 1 ,D k k= Φ − Φ  we need to calculate 
1DZ   и  2

1

Z
Deσ  .

To find the first moment of a random variable 
1
,DZ   we find its Laplace transform

( ) ( )

( ) ( ) ( )

2

1

1

2

1

2

1 2 1

1
1 exp

22

1 exp .
2

D

k
Z

k

x
Ee P D x dx

P D k k

−λ  
ψ λ = = − + −λ − = 

π  

 λ  = − + Φ + λ − Φ + λ   
 

∫

As the first moment exists, it is equal to

( ) ( ) ( )
1 1 20 .DZ k k= −ψ = φ − φ′ 

Now, let us find

( ) ( )
2

2

1

1

22
2

2 2 2 1 2

1
exp exp .

2 22

k

Z
D

k

x
e x dx k kσ    σ  = σ − = Φ − σ − Φ − σ    π    

∫ 

Combining the above formulas, we obtain

( ) ( ) ( )( ) ( ) ( )

( ) ( )( )
2
2

2

1 2 1 1 1 2

2
2 2 1 2

, 2 1 2

1 2 .

FMd k k k k

e k k
σ

µ +

   ξ η = µ Φ − Φ − + σ φ − φ +   

 + − Φ − σ − Φ − σ 

To obtain the final result, it is necessary to calculate 1 2,k k  and find the conditions under which 
1D  is nonempty. If 1D  is nonempty, then 1 2,k k  are the roots of the equation

( )1 1 2 2exp .# 22x xµ + σ = µ + σ  

Now, let us make the variable replacement ( )2 1
1 1

1 1 2

,
y

y x x
σ µ

= − µ + σ = − −
σ σ σ

. Then, the equation is 

transformed into

1 2
2 1

2 1

exp ;y y
 σ σ

− = µ − µ − σ σ 

( )2 2
2 1

1 1

exp .# 23yye
 σ σ

= − µ − µ σ σ 

The right-hand side is negative, so (23) has two real solutions (i. e., 1D  is nonempty) only in the 

case of 12 2
2 1

1 1

exp e− σ σ
− µ − µ > − σ σ 

 (see the definition of the Lambert W ). Taking the logarithm of 

this inequality, we obtain (*).
If condition (*) is satisfied, the roots of (23) are found using the W  function:

2 2
1 0 2 1

1 1

exp ,y W
  σ σ

= − µ − µ  σ σ  

2 2
2 1 2 1

1 1

exp .y W−

  σ σ
= − µ − µ  σ σ  
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By substituting these solutions into the inverse replacement 1

1 2

y
x

µ
= − −

σ σ
, we obtain (13), which 

completes the proof of the theorem.

Proof of Corollary 1
If ,X Y  are random variables, it immediately follows from (6) that

( ) ( ), , , .FM FMd cX cY c d X Y c= ∈

Thus,
( ) ( )

2

0 0, 1 ,exp , .
2

B S S
FM t t FM B t S t FM

t
d X X X d W W X d

  σ
= + σ − + σ = ξ η  

  

Here, we designate 
2

1 , exp
2
S

B t S t

t
W W

 σ
ξ = + σ η = − + σ 

 
. Clearly,

( ) ( ) ( )2 2
1 1 2 2, , , ,# 24N LNξ ∼ µ σ η ∼ µ σ

where 
2

2 2 2 2
1 2 1 21, , ,

2
S

B S

t
t t

σ
µ = µ = − σ = σ σ = σ .

Let us show that condition (*) is satisfied. Suppose that for some 1 20, 0σ > σ > , this is not true. 
Then, through (14), ( ), 0FMd ξ η =  (i. e., 

d

ξ = η ). We obtain the contradiction with (24). Substituting the 
parameter values into formula (12) of Theorem 1, we obtain (15) and (16).

Proof of Theorem 2
1. Let us fix 2 0σ >  and consider an optimization problem

( )
1 0

, minFMd
σ >

ξ η →

From (15) and (16) and the continuous differentiability of W  for 1 2, 0σ σ > , the function ( ),FMd ξ η  
is found to be continuously differentiable with respect to 1σ  at 1 2, 0σ σ > . Moreover, the values close 
to zero and a very large value of 1σ  are not optimal. Hence, the minimum point satisfies the neces-
sary condition

( )
1

,
0.FMd∂ ξ η

=
∂σ

Substituting into (21) the martingale values of parameters and differentiating it by 1σ  using the 
Leibniz integral rule, we obtain

( )

( ) ( )

( ) ( ) ( )

1

2 2

1 1

2

11

2
2

2 1
1 1

2
2

2 1
1

2
2

2 1 1 2

,
2 exp 1

2

2 exp 1 2
2

2 exp 1 | 2 2 .
2

FM
D

k k

k k

k
Dk

d
Z Z

z z z dz z z dz

z z z Z k k

  ∂ ξ η σ∂= − − + σ − − σ =  ∂σ ∂σ    
  σ∂= − − + σ − − σ φ = φ −  ∂σ   

  σ  − φ − + σ − − σ = = φ − φ      

∫ ∫

 

 

Here, the term with substitution is equal to zero, as 1 2,k k  are the roots of (22).
Thus, the point 1σ  is optimal if and only if

( ) ( )1 2 1 2 .k k k kφ = φ ⇔ =
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Let us show that the case 1 2k k=  is impossible. Indeed, if 1 2k k= , then from (15), ( ), 0FMd ξ η = ; 

that is, 
d

ξ = η . We obtain the contradiction with

( ) ( )2 2
1 1 2 2, , , .ξ ∼ µ σ η ∼ µ σ 

Thus, 2 1k k= − . From (16), we obtain

( ) ( )0 1 2 ,W z W z−+ = − δ

where we designate 
2

2 2 2 2

1 1 1

, exp
2

z
 σ σ σ σ

δ = = − − − σ σ σ 
. Adding to this equation the definition of the 

Lambert W  function, we obtain the system

( ) ( )
( ) ( )

( ) ( )

0

1

0 1

0

1

2
W z

W z

W z W z

W z e z

W z e z−

−

−

 + = − δ
 =


=

Solving it, we determine

( ) 2 2
0 ( ) ,W z zeδ= −δ + δ −

( ) 2 2
1 ( ) .W z zeδ

− = −δ − δ −

Hence, from (16)

2
2

2 1
1

1
1 .k k e−σ= − = −

σ

Let us substitute the determined value of 2k  into (22)

2 2
2 2

2
2 2

1

1 1 exp 1 .
2

e e−σ −σ σ σ
+ − = − + − σ 

From this, we can easily express as

2
2

2
2

* 2
1 2

2

1
.

ln 1 1
2

e

e

−σ

−σ

σ −
σ =

σ  + + − 

2. Analogically to the first point, we equate to zero the derivative

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2 2

1 1

2 2

1 2

2
2

2 1
2 1

2
2

2 2 2 2

1 2 2 2

,
2 exp 1

2

2 exp 2
2

2 2 0.

FM
D

k k

k k

k

k

d
Z Z

z z z dz z z dz

yd y k k
−σ

−σ

  ∂ ξ η σ∂= − − + σ − − σ =  ∂σ ∂σ    
 σ

= − − σ − + σ φ = − − σ φ − σ = 
 

 = − Φ = − φ − σ − φ − σ = 

∫ ∫

∫

 
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From here, 1 2 2 2k k− σ = − σ . Again, considering the impossibility of case 1 2k k= , we obtain
1 2 22 .k k+ = σ

Proof of Theorem 3
From (5), we obtain

( ) ( ) ( )( ) ( ), 2 ,# 25TV

A

d p x p x dxξ ηξ η = −∫

where set ( ) ( ){ }:A x p x p xξ η= >  —  is the union of intervals whose endpoints are the roots of the 
equation

( ) ( ).p x p xξ η=

This equation has only positive roots as ( ) ( )0, 0p x p xξ η> =  at 0x ≤ . Let us write it out explicitly 
and transform it.

2 22
2

2 2
1 21 2

(ln / 2)1 ( 1) 1
exp exp ;

2 2

xx

x

   + σ−− = −   σ σσ σ   

( )
4

2 2 22 2
22 2

1 1 2

1 1
ln ln 2 1 ( ln ) ln ;

42 2
x x x x x

  σ σ
+ = − + − + σ +  σ σ σ   

( )
2 2 2

2 2 2 2 22 1 1 2
1 1 12

1 2

2 ln 2 ln 2 1 (ln ) ln ;
4

x x x x x
 σ σ σ σ

σ + σ = − + − − σ − σ σ 

( )
2 2

2 2 2 2 21 1 2 2
1 1

2 1

2 ( ) (ln ) 3 ln 1 2 ln 0.
4

x x x x
 σ σ σ σ

− − − σ + − − σ = σ σ 

Let us denote the left part of the equation by ( )h x  and find the derivatives of this function:

( ) ( )
2

21 1

2

32ln
' 2 1 ( ) ,

x
h x x

x x

σ σ
= − − −

σ

( ) ( ) 2
21 1

2 2
2

2 1 ln 3
2 ( ) .

x
h x

x x

−σ σ
″ = − +

σ

Equality ( ) 0h x′ =  is equivalent to ( ) 2 21
1

2

2 1 2( ) ln 3x x x
σ

− = + σ
σ

, which has exactly two roots for 

geometric reasons. Hence, the function ( )h x  has two local extrema on ( )0,+∞ . Let us denote them 
by * *

1 2,x x  and * *
1 2x x< .

As ( ) ( )
0

lim , lim
x x

h x h x
→ + →+∞

= −∞ = +∞ , the equation ( ) 0h x =  has ( )0,+∞  at most three roots. As 

( ) ( )p x p xξ η>  at 0x <  and at 0x >  ( ) ( )p x p xξ η> , when ( ) 0h x < , set A  can be represented as

( ) ( ) ( )1 2 3, , .# 26A x x x= −∞ ∪
If the equation has less than three roots, consider 2 3x x= . Combining (26) with the integral rep-

resentation of the total variation metric (25), we obtain the required statement.
To find the Kolmogorov metric, consider the function ( ) ( ) ( ).g x F x F xξ η= −  As ( )lim 0

x
g x

→∞
=  at the 

point at which the maximum of the modulus is reached, we have the equality ( ) ( ) ( ) 0.g x p x p xξ η= − =′
The solutions of this equation are the roots of 1 2 3, ,x x x  obtained in (19). Hence,
( ) ( ) ( ) ( ) ( )

1,2,3
, max max .K i i

x i
d F x F x F x F xξ η ξ η∈ =

ξ η = − = −

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4 Numerical Analysis
Calculation of the Fortet-Mourier Metric
The value of the Fortet-Mourier metric in 
(12) cannot be expressed in elementary func-
tions. This is an expected result, which nat-
urally arises when dealing with normal and 
lognormal distributions: the distribution 
function ( )Φ ⋅  appears, for example, in the 
Black-Scholes formula (Black and Scholes, 
1973). However, in (12) the Lambert W , which 
is much less frequently used function than 

( )Φ ⋅ . Nevertheless, many mathematical pack-
ages allow calculating the value of any of its 
branches, which simplifies the numerical cal-
culation of the formula.

Calculation of the Total Variation Metric and the Kolmogorov Metric
Let us discuss here the numerical computation of the total variation metric.

Calculation ( ),TVd ξ η  Using Quadrature Methods
One of the approaches for the calculation of the total variation metric is the calculation (see (5)) of 
the integral

( ) ( )2 ( )p x p x dx+
ξ η−∫



using quadrature methods.
As

( ) ( ) ( )( ) ,p x p x p x+
ξ η ξ− ≤

and ( )1 1,ξ ∼ µ σ , we will approximate the integral by the proper one

( ) ( ) ( ) ( )
1

1

( ) ( ) .p x p x dx p x p x dx
+δ

+ +
ξ η ξ η

−δ

− ≈ −∫ ∫


As for 0x < ,

( )
2 2 21 1 1

exp exp exp ,
2 2 22 2 2

x x
t t t x

x dt dt
x x−∞ −∞

     
Φ = − ≤ − = − −     

π π π     
∫ ∫

the approximation error does not exceed

( ) ( )
1 2

1
2

1 1

2
2 2 exp .# 27

2
p x dx

−δ

ξ
−∞

   σδ δ= Φ − ≤ −  σ δ π σ   
∫

Now, let us estimate the accuracy of the integral calculation

( ) ( )
1

1

( )p x p x dx
+δ

+
ξ η

−δ

−∫

 
Figure 2. Function graph ( )h ⋅  at 1 2 1σ = σ =

Source: The authors.
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by using the trapezoidal method. The integrand function here is not twice continuously differentiable; 
however, (26) indicates that it has no more than three break points. As the function is zero at each 
break point, the integration error in the mesh section containing these points does not exceed 2

13 ,M h  
where

( )
( ) ( )' '

1
1 ,1
max

x
M p x p xξ η∈ −δ +δ

= − .

Combining this with the standard estimation for the trapezoidal rule (Samarsky and Gulin, 1989), 
we obtain

( )2
2

2 1

2
3 ,

12

h
M M h

δ
Ψ ≤ +

where Ψ  is the error incurred in the integration calculations performed on a grid of size N , 
2

h
N

δ=  
grid step, and 

( )
( ) ( )2

1 ,1
max

x
M p x p xξ η∈ −δ +δ

= ″ − ″ .

As ( )
1 1

1 1x
p xξ

 −= φ σ σ 
considering ( ) ( )x x x′φ = − φ , we find

( ) ( )
2

'
3 3 5

1 1 11 1 1

1 1 1 1 ( 1) 1
, .

x x x x x
p x p x″

ξ ξ
     − − − − −= − φ = − φ + φ     σ σ σσ σ σ     

( )
( )

( )
( )

2
'

23 31 ,1 1 ,1
11 1

1
max , max 1 .

2 2x x
p x p x″

ξ ξ∈ −δ +δ ∈ −δ +δ

 δ δ≤ ≤ + σπσ πσ  

Using ( ) 2

2 2

ln1 x
p x

xη
 − µ

= φ σ σ 
, we can find

( ) ( ) ( ) ( )( ) ( ) ( ) 3
' 2

2 2 3 2
22 2 2

3 ( ) 1
, 2 ,

d x d x d xd
p x d p x

x x
″

η η

 φ −σ +
= − φ = + + σσ σ σ 

where we designate ( ) 2

2

ln
.

x
d x

− µ
=

σ

Let us assume that 1 0,− δ > which will be true in practice as the values of volatilities are usually 
small. Let us denote

( )
( ) ( ) ( )2 2*

1 ,1
2 2

ln 1 ln 1
max max , .

x
d d x

∈ −δ +δ

 − δ − µ + δ − µ
= =  σ σ 

Then,

( )
( )

*
' 2

2 21 ,1
2

max ,
2 (1 )x

d
p xη∈ −δ +δ

σ +
≤

πσ − δ

( )
( )

* * 3

231 ,1
2 22

1 3 ( ) 1
max 2 .

2 (1 )x

d d
p x″

η∈ −δ +δ

 +≤ + + σ σπσ − δ  

Combining the obtained inequalities, we find

3 2 * * 3

3 2 3 22
21 1 2 2

*2
2

3 2 22
1 2

2 1 1 3 ( ) 1
1 2

(1 )3 2

12
.

(1 )2

d d

N

d

N

    δ δ +Ψ ≤ + + + + +    σσ σ σ − δ σπ      
 σ +δ δ+ + σ σ − δπ  
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Calculation of ( ),TVd ξ η  using the Monte Carlo method

The same integral can be calculated using the Monte Carlo method, as

( ) ( ) ( )
( ) ( ) ( )

( )( ) (1 ) [1 ] ,
p x p

p x p x dx p x dx
p x p

η η+ + +
ξ η ξ

ξ ξ

ξ
− = − = −

ξ∫ ∫
 



where the expectation is taken with respect to the distribution of a random variable ( )pξξ ∼ ⋅ .
We simulate the independent random variables ( )1, , nX X pξ… ∼ ⋅  and approximate the integral by 

1

1 n

i
i

Y
n =
∑ , where 

( )
( )2(1 )i

i
i

p X
Y

p X
η +

ξ

= − . The mean-square deviation in this case can be expressed as

( ) 2

1 1

1 1 2
( , )

n n

i TV i
i i

Y d Var Y
n n n= =

 
− ξ η = ≤ 

  
∑ ∑

Numerical Solution of a Nonlinear Equation
Let us now discuss the numerical solution of (19). Consider the case that has exactly three roots 

(for cases with fewer roots, the algorithm will be similar). As in the proof of Theorem 3,

( ) ( )
2 2

2 2 2 2 21 1 2 2
1 1

2 1

2 ( ) (ln ) 3 ln 1 2 ln ,
4

h x x x x x
 σ σ σ σ

= − − − σ + − − σ  σ σ 

( ) ( )
2

21 1

2

32ln
' 2 1 ( ) ,

x
h x x

x x

σ σ
= − − −

σ

( ) ( ) 2
21 1

2 2
2

2 ln 1 3
2 ( ) .

x
h x

x x

−σ σ
″ = + +

σ

Equation ( ) 0h x′′ =  has exactly one root, which means that the function ( )h z  has one inflection 
point that lies between *

1x  и  *
2x  (Fig. 2), and therefore, it is concave on ( )*

10,x  and convex on ( )*
2, .x +∞   

 
This ensures that Newton’s method for the root 1x  with an initial point ( )0

1x  such that ( )0
1 1x x<  

converges to the root. For the same reason, Newton’s method will converge to root 3x  at the initial 
point ( )0

3 3x x> . Root 2x  can be localized by the bisection method for 1 3,x x    and then calculated by 
Newton’s method.

According to Samarsky and Gulin (1989), if ( )h ⋅  is twice continuously differentiable in the neigh-

borhood ( )*
rU x  of root *x  of the equation ( ) 0h x = , and

( )

( )
( )

( )
( )

* *

0*
2

1 2
1

1, inf , sup .
2 r r

x U x x U x

M x x
q m h x M h x

m ∈ ∈
′

−
< ′′= = =

Then, Newton’s method converges to *x , and

( ) ( ) ( )0* 2 1 * .# 28
kkx x q x x−− ≤ −

Thus, for convergence, it is sufficient to assume that in some neighborhood of the root, the second 
derivative is bounded and the first one is strictly separated from zero.

At ( )0
1x x> ,
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( )( )
( )

0
2

121 1
2 0 20 2

2 11

1 ln 3
2 2( ) max ,1

( )( )

x
M

xx

 −σ σ ≤ + +
 σ
 

,

and at the localization of the root, the minimum 
of the modulus of the first derivative is attained 
at one of the segment endpoints, where it can be 
computed explicitly. Therefore, by partitioning the 
segment until 1q < , we can achieve a guaranteed 
rate of convergence (28).

Results of Numerical Calculations
The results of metric calculation and optimal 
values * *

1 2,σ σ  for the Fortet-Mourier metric at 

( )
2
2

1 2 1 2, 0,1 , 1,
2

σ
σ σ ∈ µ = µ = −  are presented in 

Figs. 3 and 4.
The contour lines show that the distances between random variables ,ξ η  tend to zero as 

1 20, 0σ → σ → . This is because of the convergence of distributions ,ξ η  to the Dirac measure as the 
volatilities tend to zero.

Application of the Estimates to Certain Options
In this section and hereafter, when referring to processes (1) and (2), we imply that they are martin-
gales; that is, (3) is satisfied.

Estimates (7)–(9), as well as the formulas for the metrics, show that the significant parameters 
determining the difference between the models are the integrated (or cumulative) volatilities, de-
noted by 1 2,σ σ .

The application of estimates (7)–(9) to some types of options is shown below.

Put and Call Options
The payoff function of a standard call option ( ) ( )C T Tf X X K += −  is Lipschitz continuous with the 
Lipschitz constant equal to 1. Therefore, from (7),

( ) ( ) ( ) ( )0, , , , .B S
B S FM T T FMP f T P f T d X X X d− ≤ = ξ η

 

 
 

Figure 3. Contour lines ( ),FMd ξ η  and optimum values 
( ) ( )* *

1 2 2 1,σ σ σ σ  plots

Source: The authors.

Figure 4. Contour lines ( ),TVd ξ η  and ( ),Kd ξ η
Source: The authors.
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Let us use the data obtained by Bachelier (1900). 
Consider an option with the time to exercise equal 
to one month, for which the integral volatility 
equals 1 2 0.008σ = σ = σ ≈ . Then, we find

( ) ( ) ( )5
0, , 3.1 10 .# 29B C S CP f T P f T X−− ≤ ⋅

Exactly the same estimate is true for a put op-
tion.

It is also interesting to compare this estimate 
with that obtained by Schachermayer and Teich-
mann (2005) for a call option “at the money” (i. e., 
for 0K X= ):

( ) ( )
3

00 , , .
12 2

B C S C

X
P f T P f T

σ
≤ − ≤

π

For the same value of σ  on the right-hand side, we get 8
01.6 10 X−≈ ⋅ . Of course, this exceeds the 

accuracy of (29) by three orders of magnitude; however, the estimation with the Fortet–Mourier metric 
allows us to work with a very wide class of payoff functions and therefore is a more universal method.

Binary Options
Consider a binary call option with payout function

( ), .
TB C T X Kf X M ≥= 

Then, from (8),

( ) ( ) ( ), ,, , , .B S
B B C S B C TV T TP f T P f T Md X X− ≤

Substituting the Bachelier’s data, we obtain

( ) ( ) 3
, ,, , 6 10 .B B C B B CP f T P f T M−− ≤ ⋅

As it was noted, the total variation metric provides less accurate but still acceptable estimate.
Let us also apply (9):

( ) ( ) ( ) 3
, ,, , , 1.6 10 .B S

B B C B B C K T TP f T P f T Md X X M−− ≤ ≈ ⋅

The Kolmogorov metric gives a more accurate result, which, however, has the same order as that 
of the total variation metric.

Estimation of Volatility Using the Oil Market Prices
Let us now try to apply the obtained estimates to the current data. For this purpose, it is nec-
essary to evaluate the parameters ,B Sσ σ  of models (1) and (2). Furthermore, we apply statisti-
cal estimation methods assuming that the data satisfy the Bachelier model or the Samuelson 
model. For real market prices, the distribution of their increments or the increments of their 
logarithms is poorly approximated by the normal distribution and the increments themselves 
are not independent (e. g., the effect of volatility clusters occurs). These effects are considered 
using time-series models with conditional heterogeneity (ARCH models) that allow to describe 
the asset price behavior more precisely. In addition, the processes obtained using these mod-
els, with appropriate normalization, converge to diffusion ones (Gouriéroux, 1997; Th. 5.15). 

 
  Figure 5. daily price increments

Source: The authors.
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It can justify their application to the estimation of parameters of Bachelier and Samuelson 
models. However, when comparing these models, we are interested in a rough evaluation of 
the volatility9.

Consider price tX  as the closing price for WisdomTree WTI Crude Oil from January 2017 to No-
vember 2018 (Figure 5). Let us consider dimensionless values

0

, 0,1, , 335.t
t

X
Y t n

X
= = … =

According to the Bachelier model, the price increments 1t t tY Y Y −∆ = −  can be represented as

( )1, 0,1 .t B t t t tx W W W W −∆ = α + σ ∆ ∆ = − ∼ 

Thus, as the Wiener process increments are independent, we consider { }tx∆  as a sample of random 
variables having a normal distribution ( )2, Bα σ .

The maximum likelihood estimate Bσ  for the standard deviation from the sample obtained from 
the Gaussian distribution with two unknown parameters, mathematical expectation and variance, is



2

1

1
( ) ,

n

B t t
t

Y Y
n =

σ = ∆ − ∆∑

where

1

1
.

n

t t
t

Y Y
n =

∆ = ∆∑

This estimate gives an approximate value for the volatility  0.0144Bσ ≈ .

In the Samuelson model, the logarithm increments

( ) ( )2ln , .t S t SY W∆ = γ + σ ∆ ∼ γ σ

Estimating the standard deviation similarly, we obtain  0.0150Sσ ≈ .

Let us construct a confidence interval for the obtained estimates with confidence level q . For the 
sample 1, , nZ Z…  obtained from normal distribution with two unknown parameters, the mathemat-

ical expectation µ  and variance 2σ , the random variable 
2

2
1

( )n
ni

i

Z Z

=

−
σ∑  has a distribution of ( )2 1nχ −  

(e. g., DeGroot and Schervish (2011)). Therefore, to estimate the maximum likelihood �σ  of the scale 

parameter σ , we have


( ) ( )
2

1 2 1 2 1 12
,n nn q− −

 σγ < < γ = χ γ − χ γ = 
 σ 



where ( )1n−χ ⋅  denotes the cumulative distribution function for the law ( )2 1nχ − . Let us choose

1 1
1 1 1 1

1 1
, ,

2 2n n

q q− −
− −

− +   γ = χ γ = χ      

then the corresponding confidence interval for σ  is

Proximity of Bachelier and Samuelson Models for Different Metrics



70

 

2 1

, .
n n 

σ σ γ γ  

For the confidence level 0.99q = , we obtain 

the confidence intervals as follows:

[ ] [ ] ( )0.0131,0.0160 , 0.0136,0.0166 .# 30B Sσ ∈ σ ∈

The obtained results are consistent with the 
normalized values of Chicago Board Options Ex-
change (CBOE) Oil Volatility Index (OVX) over the 
same period of time (Fig. 6). This index is calculated 
similarly to the volatility index (VIX) but uses oil 
options. The OVX values should be interpreted as 
implicit volatility (i. e., volatility calculated based on 
the observed option prices and reflecting appropri-
ate expectations of market volatility behaviour in 
the next month). By contrast, the estimates derived 
from the historical data  ,B Sσ σ  reflect the value 
of realized volatility; therefore, the comparison of 
these values is not entirely correct. Nevertheless, 
our goal is to only estimate the order of magnitudes 

Bσ  и  Sσ ; thus, it is acceptable for a rough evalu-
ation of “engineering character.”

Now we apply the estimate (7) to the call op-
tion with the time to expiration equal to one 
month ( 30T = ) and obtain

( ) ( ) ( ) ( )3
0, , , 4.7 10 .# 31B S

B C S C FM T TP f T P f T d X X X−− ≤ ≈ ⋅

For a binary option with 30T =  and payout M , according to (8),

( ) ( ) ( ) ( )2, , , 7.9 10 .# 32B S
B B S B TV T TP f T P f T Md X X M−− ≤ ≈ ⋅

If we apply (9), we obtain

( ) ( ) ( ) ( )2, , , 2.1 10 .# 33B S
B B S B K T TP f T P f T Md X X M−− ≤ ≈ ⋅

Values of integral volatility
Let us find at what values of the integral volatility parameter the processes ,B S

t tX X  remain “close” 
to each other.

Using the Ito formula (e. g., Øksendal, 1991), we find that ,B S
t tX X  satisfy the stochastic differential 

equations

0 ,B
t B tdX X dW= σ

,S S
t S t tdX X dW= σ

where for a small t  value, the optimal relation between the volatilities is B Sσ ≈ σ .

 
 

 
 

Figure 6. oVX index

Source: The authors.

Figure 7. Process trajectories ,B S
t tX X .

Source: The authors.
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Let us now calculate the variances:

2 2
0 0, ,B B

t B t BVarX X t VarX X t= σ = σ

( ) ( )2 22
0 01 , 1 .S St tS S

t tVarX X e VarX X eσ σ= − = −

The variances and standard deviations depend only on the initial price and integral volatility. 
Assuming 0 1, 1B SX = σ = σ = σ = , let us model both processes (Fig. 7) such that they correspond 
to the same Wiener process tW . At 0.2t ≈ , the standard deviations and the processes themselves 
begin to differ appreciably. This value corresponds to the integral volatility value 0.45tσ ≈ .

For the options considered in the previous section, the integral volatility is approximately equal 
to  0.015 30 0.082Tσ ≈ ⋅ ≈ .

Option Price Sensitivity to Volatility
To validate the above-used estimates (31)–(33), the option price must change insignificantly for 
small changes in volatility. This requirement is based on the fact that the value σ  is never exactly 
known in the model and its estimation leads to an error when calculating the option price. Let us 
estimate the sensitivity vega (see Hull, 2012)

( ),P f T∂
=

∂σ


for standard and binary put and call options.
The price of a standard call option in the Bachelier model is calculated as

( ) ( ) 0 0
0 0

0 0

, .B C B
B B

X K X K
P f T X K T X

T X T X

   − −
= − Φ + σ φ   σ σ   

Its derivation has been provided by Schachermayer and Teichmann (2005). Similarly, the price of 
a standard put option can be determined:

( ) ( ) 0 0
0 0

0 0

, .B P B
B B

K X K X
P f T K X T X

T X T X

   − −
= − Φ + σ φ   σ σ   

Let us find the vega coefficient for these options:

( ) ( ) 0 0 0
0 02

0 0 0

0 0 0
0 02

0 0 0

,

,

B C

B B B B

B
B B B

P f T X K X K X K
X K T X

T X T X T X

X K X K X K
T X X T

T X T X T X

     ∂ − − −
= − φ − + φ +     ∂σ σ σ σ     

     − − −
+σ φ − = φ     σ σ σ  

′
  

as ( ) ( )x x x′φ = − φ .

Similarly, for a put option,

( ) ( ) ( )0
0

,,
.# 34B CB P

B BB

P f TP f T K X
X T

T

  ∂∂ −
= φ = ∂σ ∂σσ 
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In the Samuelson model, the prices of standard put and call options are determined using the 
Black-Scholes formulas:

( )
2 20 0

0

1 1
ln ln

2 2, ,
S S

S C
S S

X X
T T

K KP f T X K
T T

   + σ − σ   = Φ − Φ   σ σ      

( )
2 20 0

0

1 1
ln ln

2 2, 1 1 .
S S

S P
S S

X X
T T

K KP f T X K
T T

      + σ − σ      = − − Φ + − Φ      σ σ               

The derivatives of these quantities obtained by Sσ  are found to coincide. Denoting

2 20 01 1
ln ln

2 2, ,
S S

S S

X X
T T

K Ky y
T T

+ −

+ σ − σ
= =

σ σ

let us find

( ) ( ) ( ) ( ) ( )
0 0

0 2 2

ln ln, , 1 1
.# 35

2 2
S C S P

S S S S

X X
P f T P f T K KX y T K y T

T T
+ −

   
∂ ∂    = = φ − + − φ − −   ∂σ ∂σ σ σ      

For binary call and put options with payout features,

( ) ( ), ,,
T TB C T X K B P T X Kf X M f X M> <= =  .

Accordingly, the price is determined as an expectation with respect to the martingale measure:

( ) ( ) ( ) 0
, ,

0

1 ,B B
B B C B C T T

B

K X
P f f X M X K M

T X

  −
= = > = − Φ  σ  
 

( ) 0
,

0

,B B P
B

K X
P f M

T X

 −
= Φ σ 

( ) ( ) ( )
20

, ,

1
ln

2 ,
S

S S
S B C B C T T

S

X
T

KP f f X M X K M
T

 − σ = = > = Φ σ  

 

( )
2

0
,

1
ln

2
.

S

S B P
S

K
T

X
P f M

T

 + σ 
= Φ 

σ 
  

From this, we find

( ) ( ) ( ), , 0 0
2

0 0

, ,
,# 36

B B C B B P

B B B B

P f T P f T K X K X
M

T X T X

∂ ∂    − −
= − = φ   ∂σ ∂σ σ σ   

( ) ( ) ( )
20 0

, ,

2

1
ln ln, , 12 .# 37

2

SS B C S B P

S S S S

X X
TP f T P f T K KM T

T T

   − σ∂ ∂    = − = φ − −   ∂σ ∂σ σ σ      
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Let us now estimate the order of the price calculation error that appears due to an inaccurate meas-
ure of volatility. This error approximately equals to ∆σ , where   is the option vega coefficient and 
∆σ  is the volatility measurement error. As options «at the money» have the greatest liquidity, their 
study is of the greatest interest. Therefore, we further assume that 0, 30K X T= = . From (34) and (35) 
considering confidence intervals (30), we obtain that for the standard options with the confidence 
probability, equal to 0.99, the error approximation of ( ) ( ), ,B C S CP f T P f T−  calculation does not exceed



3
0 0 0

1
max max 7 10

2 2
SB S

T
X T T X X− ∆σ + φ σ ∆σ ≈ ⋅  π

For binary options with 0, 30K X T= = , according to (36) and (37), with confidence probability 
0.99, the error approximation does not exceed



31 1
max 1.8 10 .

2 2
S SM T T M− φ σ ∆σ ≈ ⋅  

The resulting estimates differ from (31)-(33) by no more than an order of magnitude. Thus, with 
the estimation methods used, the error associated with an inaccurate measurement of the volatility 
can make almost the same contribution to the option price as a model change.

In this section, sensitivity estimation is obtained only for the options of a special form. When 
applying similar methods for classes of functions, the accuracy of the estimation deteriorates con-
siderably. Let us estimate the vega coefficient in the Bachelier model: if we denote ( )p ⋅  as the den-

sity of the random variable 
0

TX

X
, then the price of the European option with payout function ( )f ⋅  

and time to expiration T  can be found as ( ) ( ) ( )0, .BP f T f yX p y dy
∞

−∞

= ∫

Based on (1) and (3), the function ( )p ⋅  can be expressed as ( ) 1 1

B B

y
p y

T T

 −= φ σ σ 
.

After changing the variables 
1y

z
T

−= , we obtain

( ) ( )( )0

1
, 1 .B

B B

z
P f T f T z X dz

∞

−∞

 
= + φ σ σ ∫

Let us differentiate the integral by parameter Bσ . The differentiation performed under the integral 

is possible for all 0Bσ > , as, considering Bσ  on each finite interval, the function ( )
B

p
f

 ∂ ⋅ ∂σ 
 will be 

majorized by an integrable function that does not depend on Bσ .

( ) ( )( )
( )( ) ( ) ( )

( )

2

0 2 4

2
0

1
, 1

# 38
1

1 .

B

B B BB B

B
B

P z z z
f T f T z X dz

f T z X z z z dz

∞

−∞
∞

−∞

    ∂
= + − φ + φ =    ∂σ σ σσ σ     

 = + σ −φ + φ σ

∫

∫

For a bounded function ( ) ( )f B⋅ ∈  ,

( ) ( ) ( ) ( )2 2
, .# 39B B

B
B B B

P f
f T z z z dz f

∞

−∞

∂  ≤ φ + φ = ∂σ σ σ∫ 

 
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For the Lipschitz continuous functions, we will use the inequality

( ) ( )0 0 .Lipf x f X f x X≤ + − 

Considering that

( ) ( )32 4
| | , | | ,

2 2
x x dx x x dx

∞ ∞

−∞ −∞

φ = φ =
π π∫ ∫

( ) ( )( ) ( ) ( )

( )
( )

2
0 0

0
0

1
,

# 40
2 6

2

B
Lip B

B B

Lip
B

P
f T f X f T z X z z z dz

f X
T X f

∞

−∞

∂  ≤ + σ φ + φ ≤ ∂σ σ

≤ +
σ π

∫  

 

According to estimates (39) and (40), as well as the confidence interval (30), the calculation error 
( ),BP f T  for a standard call (put) option in money with 30T =  does not exceed

2
0 0

6
30max 2 10 ,

2
B X X−∆σ ≈ ⋅ ⋅

π

and for a binary option with 0, 30K X T= =  does not exceed



2
0.22 .

B

M M= ⋅
σ

The resulting accuracy estimates are inferior to those obtained using the exact representation 
of the vega coefficient for these options by one or two orders of magnitude, which is expected as a 
consequence of the universality of the estimates.

5 Conclusion
The approach based on the use of probability metrics enables the estimation of how much 
the transition from one model to another affects the price of a European option with a payout 
function from a certain class (represented as a sum of Lipschitz continuous and bounded func-
tions). This price change can be estimated by using an appropriate probabilistic metric and the 
norm (or semi-norm) of the payout function in a suitable function space. However, the main 
factor affecting the value of the estimation is the integral volatility, at a large value of which 
the Bachelier and Samuelson models, which are essentially arithmetic and geometric random 
walks, cease to be similar. As expected, the estimates obtained using the Fortet-Mourier met-
ric were the most accurate, whereas the use of the total variation metric and the Kolmogorov 
metric led to similarly less accurate results. Moreover, the calculation of the latter two metrics 
was reduced to the numerical solution of the same nonlinear equation describing the points of 
intersection of normal and lognormal densities.

For the oil market, measures of realized volatility were estimated and confidence intervals were 
constructed assuming that the models are true. By calculating the sensitivity (vega coefficient) for 
standard and binary options, the error arising in the estimation of model parameters was found to 
be comparable to the change in price when the model changed.
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Footnotes
1 Apparently, Samuelson was the first economist to propose this modification of the Bachelier model. There-
fore, we use the term “Samuelson’s model.”
2 For a complete list of contracts, see CME Group Advisory Notice 20–171, 2020.
3 This follows directly from the Ito formula.
4 The assumptions made in Bachelier’s thesis (in an informal way) actually mean that the price process is a 
martingale.
5 The term “coupling” is also used in random process theory in a different sense; see, for example, Sverchkov, 
and Smirnov (1990).
6 The generalized inverse function defined in this manner is also left-continuous. In this case, the random 
variable ( )1F U− , where U  is uniformly distributed on ( )0,1  random variable, has a distribution function 
equal to F .
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7 This metric forms the basis of the nonparametric criterion of the same name, which is based on the theorem 
proved by Kolmogorov (1933).
8 Also, Kantorovich metric, Wasserstein metric, and Dudley metric. The variety of names can be explained by 
many equivalent representations (for details, see Rüschendorf, https://wwwhttps://www.encyclopediaofmath.
org/index/index.php?title=Wasserstein_metric=Wasserstein_metric).
9 An exposition of the statistical analysis concerning volatility has been presented by Melnikov, Volkov, and 
Nechaev (2001), paragraph 4.3. In contrast to this study, we use the maximum likelihood estimation (instead 
of an unbiased estimation with uniformly minimal variance) for the volatility, as such estimation for bijec-
tive transformation of the parameter reduces to this transformation of the parameter estimate. Among other 
things, this is applicable when determining implicit volatility.
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