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ABSTRACT

This paper proposes a method of comparing the prices of European options, based on the use of probabilistic
metrics, with respect to two models of price dynamics: Bachelier and Samuelson. In contrast to other studies
on the subject, we consider two classes of options: European options with a Lipschitz continuous payout
function and European options with a bounded payout function. For these classes, the following suitable
probability metrics are chosen: the Fortet-Maurier metric, the total variation metric, and the Kolmogorov
metric. It is proved that their computation can be reduced to computation of the Lambert in case of the
Fortet-Mourier metric, and to the solution of a nonlinear equation in other cases. A statistical estimation
of the model parameters in the modern oil market gives the order of magnitude of the error, including the
magnitude of sensitivity of the option price, to the change in the volatility.
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bnusoctb Moaenei bawenbe u CaMyanbcoHa
ANA pasIUYHbIX METPUK

Cepreii CMupHoB?, AMutpuit CoTHUKOB®
2MakynbreT BMK, MI'Y uMmenun M.B. JlTomoHocoBa
bMakynbreT BMK, MI'Y uMmenun M.B. JlTomoHocoBa

AHHOTALUMUA

B cratbe npencraBneH MeTon CpaBHEHUS LieH eBPOMeNCcKMX OMLMOHOB, OCHOBaHHbIM HA MCMOMb30BaHMM BEPO-
ATHOCTHbIX METPUK, MPUMEHUTENBHO K ABYM MOAeNsM AnMHaMuKK ueH — bawenbe n CamyanbcoHa. B otanume
OT ApYruMx paboT Ha AaHHYO TeMy, pacCMaTPMBAKOTCA K1ACChl ONUMOHOB, @ UMEHHO €BPOMeNCKMe ONLMUOHbI
C QYHKLUMEN BbINAAT, yA0BNETBOPSOLWMX YCA0BMIO JIMNWKMLA, @ TaKXKe eBponenckmMe OnuUmMoHbl C OrpaHUYEeHHOM
dyHKuMen BbinAat. [N AaHHbIX KNAcCOB BbIOMPAKOTCA NoaX0AALLME BEPOSATHOCTHbIE METPUKN: MeTpuKa PDop-
Te-Mypbe, MeTprKa NoaHOM Bapmaumm n metpmka Konmoroposa. Mbl foKasanu, YTo MX BblYMCNEHUE CBOAUTCS
K BbluncneHuto W-dyHkumm JlambepTta B cnyydae MeTpuku @opte-Mypbe U K peleHnio HEKOTOPOro HeMHeN-
HOrO YpaBHEHMS B OCTaNbHbIX ciiydasax. CTaTMCTMYeckas oueHKa NapamMeTpoB MoaeNieil Ha COBPEMEHHOM He-
(GTAHOM pbiHKE YKa3blBaeT HA MOPSA0K BEMYMHbBI NOTPELUHOCTH, BKIOUAS BEIMYMHY YYBCTBUTENBHOCTM LLEHDI
OMLMOHA K U3MEHEHMIO NOKa3aTeNs BONATUIbHOCTY.

Kniouesvie cnosa: mopens bawense; mogenb CamyanbCoHa; LeHO0Opa3oBaHMe OMLMOHOB; BEPOSTHOCTHbIE Me-
TPUKM; YYBCTBUTENbHOCTb; BONATU/IbHOCTb
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Proximity of Bachelier and Samuelson Models for Different Metrics

1 Introduction
Description of Models and Motivation
for the Study
In this study, the simplest continuous-time fi-
nancial market models are considered. The
movement of prices (X,),., ) of an asset in the
market is described in the framework of the
Bachelier model (Bachelier, 1900), using the sto-
chastic Brownian motion process:

X =X,(1+or+0,W,),t€[0,T],#(1)
where (W,)IE[O,T] is the Wiener process,
oaeR,0,>0.

The model proposed by Samuelson! (1965)
uses geometric (economic) Brownian motion to
describe the price dynamics:

X =Xpexp[yi+o3W, |1 €[0,T],#(2)

where yeR,64>0.

In both models, the volatilities 6, and o are
chosen so that they have the dimension [time] /2
and the linear trend o and exponential trend y
have the dimension [time]™.

Hereafter, the prices considered are assumed
to be discounted, which is equivalent to a zero
risk-free interest rate.

The Black-Scholes (1973) and Merton (1973)
option pricing model is based on the Samuelson
model (describing price dynamics in the market)
and is the most popular in practice. Similarly,
for the options on futures Black’s (1976) pricing
model is based on Samuelson’s model.

Bachelier (1900) not only described the dy-
namics of prices but also built a model of option
pricing. However, Samuelson (1965) noted that
the stock prices should not be negative; thus,
Bachelier’s model has not been widely used in
practice. Nevertheless, for short-term options,
the Bachelier model can better fit the real market
data than the Black-Scholes—Samuelson model
(e.g., Versluis (2006)). Note that the Bachelier
model and its modifications have been applied
to modern works on mathematical finance. For
example, the Bachelier model and its modification
with an absorption screen was used by Glazyrina
and Melnikov (2020) for pricing life insurance
policies with an invested stock index option, and
Melnikov and Wan (2021) compared this model
with the Bachelier and Samuelson models.

An unprecedented event occurred on April 20,
2020, when West Texas Intermediate (WTT) crude
oil futures prices (the benchmark for U.S. crude oil
prices) reached negative levels (see CFTC Interim
Staff Report, Trading in NYMEX WTI Crude Oil
Futures Contract Leading up to, on, and around
April 20, 2020). Fuel supply has far exceeded the
demand due to the coronavirus pandemic. Due
to overproduction, the storage tanks were so full
that it would have been difficult to find room for
new oil if the future contracts had been brought
to delivery. Because the May contract expired on
April 21, market participants with long positions
did not want to take delivery of oil (which no one
needed at that point in time) and incur storage
costs and opted to lock in such large losses by
entering into offset deals that the prices turned
negative. As of April 22, 2020, the Chicago Mer-
cantile Exchange (CME) switched to the Bachelier
pricing model for the options on futures for several
energy commodities? to account for the possibility
of negative prices.

In this regard, it is interesting to compare the
prices of derivative financial instruments obtained
using the above-described models. Schachermayer
and Teichmann (2005) proved the following esti-
mation for the price difference of a call option “at
the money” with an expiration at the moment T:

(oNT).

0<Cy-Cs < = \/ﬁ

Here, 6, =05 =0 and C;,Cg denote the op-
tion prices in the Bachelier and Samuelson mod-
els, respectively. Both processes (1) and (2) are
diffusion processes; thus, the Bachelier and Sam-
uelson models are clearly close in case of small
(and equal) values of integral volatility
c B\/T =0 S\/T = 6+/T. Meanwhile, the Samuelson
model is close® to the Bachelier model with

a linear trend y+ %G2 )

Grunspan (2011) obtained an asymptotic re-
lation between implicit volatilities for normal
and lognormal models at 7 — 0 and compared
the sensitivities (greeks) for call options. The
differences in option pricing obtained using the
Bachelier and Samuelson models are detailed in
Thomson (2016).

Another question is for what values of 6 ,/T
and 64+/T models can be considered close? We
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are interested in the problem of comparing the
prices of a European option with an arbitrary pay-
off function f(-) that belongs to a specific class
of functions and depends only on the price X,

of the underlying asset at the time of expiration
T . For each of the models (1) and (2), there ex-
ists a single equivalent risk-neutral (martingale)
measure. The option price P(f,T) with payout
function f () and time to expiration 7 is deter-
mined as the mathematical expectation relative
to the corresponding risk-neutral measure*:

P(f.,T)=E f(X;).

The processes given by relations (1) and (2) are

martingales if and only if
2
o

o=0v=—3#(3
v=-7-#(3)

Therefore, the difference between the option
prices Py(f,T)and P(f,T) in the Bachelier and
Samuelson models can be expressed as follows:

By (£.7)= P (/.T)= B (X7 )~ B (X7 ) #(4)

where the process parameters are chosen ac-
cording to (3).

The estimate for the right part of (4) can
be obtained by calculating the distance in the
Fortet—Mourier metric between the distribu-
tions of random variables X2, X, in case of
Lipschitz continuity of the payoff function
f(-). If the payout function is discontinuous
but bounded (e.g., as in the case of a binary
option), the total variation metric can be used
for the estimation. However, the Kolmogorov
metric can also be used to compare the binary
option prices; the closeness of distributions
under the total variation metric is a very strong
assumption, and hence, the corresponding es-
timate is rougher (but applicable to a broader
class of payout functions).

To compare the Bachelier and Samuelson
models, it is interesting to find the optimal rela-
tion between the volatilities 6,6 . Optimality
is understood as the dependence between these
indicators that arises when minimizing the dis-
tance between X2 and X7 in (one or another)
probability metric d(-,).

In this paper, the Fortet-Mourier metric be-
tween random variables X2 and X, is calcu-
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lated and the formulae for the total variation
metric and Kolmogorov metric are obtained.
The dependence of volatilities that minimizes
the Fortet-Mourier metric between X2 and X,

. Using the probability metrics, the estimates

for (4) are obtained to analyze the effect of
model choice on option price. By constructing
confidence intervals for volatilities in the oil
market for standard and binary call and put
options, we evaluate the error resulting from
the approximate measurement of the volatility.

Notation and Definitions
Let § be a metric space with metric d (,) and
let us denote by M(S) the set of all signed
measures on S and P(S)c M(S) as the set of
all probability measures on § equipped with
Borel o -algebra.

Definition 1. Let us define a semi-norm in the
space Lip(S) of the Lipschitz continuous on S func-

tions as follows:
—|f(x)_/;(y)| S()eLip(S).

Il /ll;,=sup
X,y

Definition 2. In the space B(S) of bounded
measurable functions on S, let us define the norm

1/ 1ly=sup|f (x)

f()eB(S).

Definition 3. For S =R in the space St(R) of
piecewise constant functions with finite number of
jumps A,,...,A, , we define a semi-norm

||f||s,=i|Aj Lf()eSt(R).

The introduced semi-norm is a norm in space
St(R)/R.

Definition 4. By the coupling of two random
variables X u Y , we cqll’ a pair (X’,Y’)for which
the following is true X =X,Y =Y . For the monotone
coupling of real random variables X u Y with dis-
tribution functions Fy (), Fy (-), we call a pair of

(F' (). K ()).U ~u(0.0),

where F, is the distribution function of a random
variable X , which is defined as

Fy (x)=P(X <x),
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and F™' is the generalized inverse function of the
monotonically non-decreasing left-continuous
function, defined via the relation®

F’l(y):inf{xeR:F(x)Zy}:
=sup{xeR:F(x)<y},ye(0,1).

Let 3(-,) be a metric in the space of random
variables taking values in §, defined on pairs
of (X,Y) of random variables, with a common
probability space.

Definition 5. The minimal metric with respect
to 8(.,-) is the metric

A

8(X,Y)=inf {5(){', Y'): X°X, Y'iy}.

Note that ’8(~,~) is therefore a metric in the
space of distributions and does not depend on
the joint distribution of X and Y .

Let F be a set of measurable functions
f:8 > R.Then, for each signed measure u on
S such that flflldu|<°° for all f e F, the fol-

S

lowing semi-norm can be defined:

|| i ]lz= sup
feF

[rdn
S

Denote M, = {u e M(S)lpllz< oo}.
Definition 6. We can say that on M, the dual
semimetric if

dp (V) =llu-Vi .

In particular, for the probabilistic measures
Pr =M P(S),

dy (X,Y)=sup|Ef (X)-Ef (Y).

feF

Let (S,B) be a measurable space.
Definition 7. The total variation norm for a
signed measure W is defined as

I ||TV=sup{jfdu:fe B(S).II £ ll5< 1}.
S

Definition 8. A total variation metric is a prob-
ability metric

dpy (01.0,) =10~ O, Iy -

If distributions Q,,0, are absolutely continu-
ous with respect to the measure u and have Ra-
don-Nikodym densities p,(-), p, (-), then

dyy <Q13Q2) = J.|p1 (x)=p, (x)|u(dx) =

=2[(p,(x)- £, (X)) (dk).#(5)

where a* = max(a,0).
Definition 9. If S =R, then the Kolmogorov
metric’ is
dy (X,Y)=sup|Fy (x)-F, (x)).

xeR

Definition 10. The Fortet-Mourier metric® is

the probability metric
dpy (X.)= sup [Bf (X)~Ef (¥)

There is also an equivalent representation of
this metric:

dpy (XY )= min{Ed(X’, Y'): X°x, Y'iy}.#(6)

The proof of equivalence of the definitions
can be found in Rachev, Klebanov, Stoyanov, and
Fabozzi (2013).

It has been shown (e.g., Bogachev (2007)) that
in case of S =R, the minimum value in (6) is at-
tained on the monotone coupling

(F' (U).F' (U)).U ~u(0,1).

Remark 1. The Fortet-Mourier metric allows
one to derive an upper estimate of (4) in the case of
Lipschitz continuity of f(-), for example, if f () is
piecewise linear (which corresponds to the portfolio
of call and put options). It is also possible to estimate
(4) by using the total variation metric if the func-
tion f () is bounded. Even if the payout function is
neither Lipschitz continuous nor bounded (e.g., if it
corresponds to a portfolio of binary and call options),
it can most likely be represented as a sum of ones,
as in practice, the payout functions usually do not
grow faster than linear ones. The Kolmogorov metric
provides a more accurate estimate than the total
variation metric; however, it is only applicable to
piecewise constant payout functions corresponding
to a portfolio composed of binary options.

Definition 11. Lambert W function is a com-
plex-valued function W :C — C, defined as a solu-
tion of the equation z = W(z)ew(z),z eC.
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W () cannot be expressed in elementary func- !
tions. We are only interested in its two branches, 0= C
Wy(2) W (z),at ze (—e‘l,O) (Fig. 1), which cor- ] // Wo(2)
respond to the real solutions of the equation 8 \'\.\\
§T 21 \\\\
xe*=z,z7¢€ (—e"l,O). S -3 \\,\.:, W-1(2)
= N,
—4 \\
The definition and notation are taken from N
Corless, Gonnet, Hare, Jeffrey, and Knuth (1996). = '\\
2 Main Results R R T R T e
Let us show how one can obtain the estimates Figure 1.Real-valued branches
for (4) by using the introduced probability metrics. of Lambert W -function

Let, as mentioned above, P, (f,T),Ps (f,T) stand  source: The authors.
for the prices of European options with payoff
function f(-) and time to expiration 7 in the

Bachelier and Samuelson models, respectively. Then, the following estimates are true:
If f() € Lip(R), then

1Py (£.T)= Py (£.T)| < Sy iy (X2 X7 ).#(7)
It £()eB(R), then

1Py (£.T)= Py (£.T)| < f Ny dyy (X2, X3 ).#(8)
If £()eSt(R), then

1By (£.T)= By (£.7)| <Nl di (XE.X5)-2(9)

Indeed, the price of a European option is defined in the Bachelier and Samuelson models as a
mathematical expectation of the payout function relative to the risk-neutral measure:

Py (f.T)=Ef (X7 )P (£.T)=Ff (X7),
where the processes X,B,X,S are martingales, i.e., =0,y = —% .
Then,
1P, (£.T)= Py (£.T) :‘E(f(Xﬁ)—f(X*;))

1. In case of Lipschitz continuity of f (),

|y (£.T)= Py (£.T)| SIS M, Is”upl\Eg(Xf)—Eg(Xi )\ = f Wy dp (X7 X7
8 LipS

2.1f f(-) is bounded, then

[ ()25 (x) s ()

<

|PB (f.T)- Py (f’T)|:

S |y (0)= oy (<)etx =1L 1 iy (X7, 5.

Here, Py» (')’pr (-) denote the densities of random variables X2 X3 .
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3. The function f(-)e St(R) can be represented as

m

F(Xp)=f (=) + 200 (X ) S (%) = AT

j=1

For each function, f;(-) it is true that

<|a|d (X7.X7).

S 50
Jj=1

‘PB (f/"T)_PS (fJ’T)‘ :‘AJ‘ FX% (Kj)_Fx;? (K/
P () B (1) < S P (1, T) By (7,7l
=I1f Nl di (X7, X7)-

Note 2: If the payout function can be represented as
FO=A0+ A0+ LA () e Lip(R). £ () € BR). £, () e St (R).#(10)
then
[Py (£.T)= P (FT)| S0 Ay iy g (XEXE )1 Sy Wy iy (X2 X 4115 N i (XX ).#(11)

The representation (10) is obviously not unique. Moreover, f, () IS unnecessary as soon as any piecewise
constant function with a finite number of jumps is bounded. Nevertheless, a proper choice of functions
/(). £5() u £;() in expansion (10) can significantly improve the estimate (11).

The following statements provide methods of calculation of the metrics appearing in (7)—(9).

Finding dg,, (X X?) is reduced to the calculation of the metric between random variables
E~-N (ul,cl) and n~ E./\f (uz,cg) that have normal and lognormal distributions. The value of this
metric is given by the following theorem.

Theorem 1
Let & ~ N(ul,of),n ~ EN(uz,oz) Then, under the condition ln( . )
1

the metric can be found with the formula
ey (EM) =1, (2[c1>(k2)—c1>(kl )]—1)+2<s1 (0(k)=0(k,))+
+eXp|:|,L2 +72}(1 2[ (ky,—0,)-®(k —02)]),

where ®(-) is a cumulative distribution function of the standard normal distribution, ¢(-) is the density
of the standard normal distribution, and k, and k, are equal to

#(12)

If condition (*) is not satisfied, then

dpy (&)= _M1+eXp|:p'2 62} #(14)
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Corollary 1. When trends and volatilities are chosen such that processes (1) and (2) are martingales
(i.e., relation (3) is satisfied), the formula for the metric between distributions of the random variables
X2, X% can be expressed as

dpy (X7 X7 )=2X, (@ (ky)-@ (k) ]-[@ (k- 0,)-® (k - 0,)]
~[0(k) =0 (k). #(15)

where 6, =6 41,6, =04+t denote the integral volatilities, and k,,k, are calculated as follows:

The following theorem answers the question about the optimal relation between ¢, and o
minimize the Fortet-Mourier metric in the risk-neutral case.

Theorem 2
For fixed o,, the minimum of expression (15) is attained at

f 2
* 02 l_e 02

G, =

=— .
622+ln(1+\/1—e_°2)

For fixed o,, the minimum in (15) is attained at o, which is a solution of the equation k, +k, = 26,,
where k,,k, are determined from (16).

The calculation of the total variation metric and the Kolmogorov metric between X; and X; can
be reduced to solving a nonlinear equation. This result is formulated in Theorem 3.

Theorem 3 o2
LE~N (w07 ).n~LN (1y,03), and =Ly, === Then,

dry (&)= 2[(1:5()‘1)‘Fn (xl))+(F§ (%)= F, (x3))—(F§ (%)= F, (x2))},#(17)

dg (&,n):max‘Fé (%)= F, (%) #(18)

i=1,2,3

where x, < x, < x; are the roots of the equation

2.2
(x* - 2x)—(ﬁ)2(1nx)2 ~30lnx+1- 2122 —2ofln(ﬁj =0,#(19)
c, 4 o,

_ In(x)—
and the cumulative distribution functions have the form F, (x)= CD( x—H j,Fn (x)= d)[m] I

Corollary 2. According to Definitions 8 and 9,

X5 x3 X5 x5
do, (X2, X5)=d,,, | =L, =L |.d (X2, X3)=d | =L,=L|.
TV( T T) TV(XO Xo] K( T T) K X, X,
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. X7 2\ A7 05T _
In the risk-neutral case, =~ N(L GST)’X_ ~LN| - 5 05T |, and the metrics are calculated by
0 0

Theorem 3 by taking into account that 6, =6 ,T,6, =0T .

3 Proofs of Theorems
Proof of Theorem 1
The cumulative distribution functions of §,n are

Fa(x)zd)(x_ul J,Fn (@:q{mﬁm.

G

Then, their inverse functions can be expressed as

Fé_l (”) =i, +0,0™ (u),Fn_l (u) = Mo ()

As the minimum in (6) is attained on the monotone coupling, we obtain

dpy (EM) =B, +06,2)-e""7 | Z =07 (U) - N (0,1).

The expectation is considered here with respect to the measure P, induced by a random variable Z .
Let us divide the space of elementary events into three disjoint sets:

D, = {m ‘W, +0,Z > e“2+"22},
D, =lwiy, +0,Z < ],
D, = 0:u,+6,Z = e”2+°2z}.
As P(Dy)=0, P(Dy_D,)=lholds, and therefore,

dpy (&)= E[(Hl +51Z)_eu2+022:|1101 +E[e”2+c2z —(u, +61Z):|H1)2-

By definition, the set D, is either empty or comprises those o for which Z € (kl,kz) for some real
k,,k, as the graph of a linear function can lie above the graph of an exponent only within a finite
interval.

In case of D, =0, considering that the expectation of the lognormal distribution with parameters

) . o, .
u,,o; is equal to exp{u2 +7} , we obtain

2

dpy (&)= E[euzmzz — (b, + GIZ):I =-1 +exp{u2 +G—22}.#(20)

If D= {(o Ze (kl,k2)} , then as it is much more convenient to work with D, than with D,, we
eliminate the indicator I, . Using the formula

EXI, =EX-EXI,

for X =e"*” —(n, +0,Z), we get
2

dpy (&M) == + exp[uz +%}— 2E[ 7% — (1, +6,2) |1, .#(21)
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As P(D;)=®(k,)-®(k ), we need to calculate EZI, u Ee™’I,

To find the first moment of a random variable ZI,,, we find its Laplace transform
-AZ1 :
y(A)=Ee " =1-P(D)) FJ.GXP{ kx—?}dx=

= 1—P(Dl)+expp—22}[d>(k2 +0)-®(k +1)].

As the first moment exists, it is equal to

EZT, ==y’ (0)=0(k,)-0(k,).
Now, let us find

sty =L jexp{ ;}dx exp{ ;}[d)(kz—cz)—(b(kl—cz)].

Combining the above formulas, we obtain

dpy (EM) =1, (2[@(k,) - @ (K))|-1)+ 20, [0k, )- 0 (k;) |+

) (1—2[q)(k2 —0,)-®(k —(52)]).

To obtain the final result, it is necessary to calculate k,,k, and find the conditions under which
D, is nonempty. If D, is nonempty, then k;,k, are the roots of the equation

I, +0,x =exp| U, +0,x | #(22

. c ..

Now, let us make the variable replacement y = ——2(u1 + Glx),x S B Then, the equation is
1 6, 6,

transformed into

O, 0, )
—_—V=eXpil =)
G, G

c o
ye' =——2exp| U, — 1, —2}.#(23)
o L 0,

The right-hand side is negative, so (23) has two real solutions (i.e., D, is nonempty) only in the

o o

case of —ﬁexp{uz - G—z} >—e! (see the definition of the Lambert W ). Taking the logarithm of
1 1

this inequality, we obtain (*).

If condition (*) is satisfied, the roots of (23) are found using the W function:

c o
—w|_S2 %2
N 0[ s eXP{Mz g 5, D
c c
v, =W, (—G—?exp{pb -, G—?D
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By substituting these solutions into the inverse replacement x = Ay , we obtain (13), which

completes the proof of the theorem. o %

Proof of Corollary 1
If X,Y are random variables, it immediately follows from (6) that

dry (cX,cY)=|c|dFM (X,Y),ceR.

Thus, 2

ot
dry (XIB,XIS):XOdFM [1+GBW”eXp{_TS+GSW’D: Xodpy (€M)

2

ool
Here, we designate 5 =1+0,W,,n= eXp{_TS"‘ GSWt}- Clearly,

&~ N(u,07),n~ LN (u,,03),#(24)
2

ot
S 2 _ 2 2 _ 2
— O =031,06, =04t.

where pu, =1Ly, =-

Let us show that condition (*) is satigfied. Suppose that for some o, >0,5, >0, this is not true.
Then, through (14), dy,, (&,1)=0 (i.e., £=n). We obtain the contradiction with (24). Substituting the
parameter values into formula (12) of Theorem 1, we obtain (15) and (16).

Proof of Theorem 2
1. Let us fix 6, >0 and consider an optimization problem

dpy, (€,m) — min

o,;>0

From (15) and (16) and the continuous differentiability of W for 6,,6, >0, the function dy,, (E_,,n)
is found to be continuously differentiable with respect to o, at ¢,,6, > 0. Moreover, the values close
to zero and a very large value of o, are not optimal. Hence, the minimum point satisfies the neces-
sary condition

dd (ﬁ,n)
J0,

=0.

Substituting into (21) the martingale values of parameters and differentiating it by o, using the
Leibniz integral rule, we obtain

ddpyy (£, J o

a ky 2 ky
= —2£I(exp[—%+Gzz}—l—clz](b(z)dz = 2Jz¢(z)dz—

1 kl k]

2

c
—2¢(z)[exp{—72+62z}—1—61z) [e=2BZ1, =2[0(k)-0(k,)]-
Here, the term with substitution is equal to zero, as k;,k, are the roots of (22).

Thus, the point o, is optimal if and only if

0(k)=0(k;) & |k| =[k|-
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Let us show that the case k, =k, is impossible. Indeed, if , =k,, then from (15), dy, (€,1)=0;
that is, iin . We obtain the contradiction with
&~ N (1,07)n~ LN (1,,03)-
Thus, k, =—k,. From (16), we obtain

Wy (2)+W_, (2)=-23,

. c c
where we designate §=—%,7=——2

2
exp{—g—;—ﬁ}. Adding to this equation the definition of the
0, O,

O

Lambert W function, we obtain the system

Wy (2)+W., (z)=-28

Solving it, we determine

W, (2)=—8+/8> =(z¢%),
W (z)=-8-18"—(z¢’).
Hence, from (16)

o =~k =— 1-e.
1

Let us substitute the determined value of &, into (22)

1+\/1—e_°% = exp[—%;+&\/l—e_"% }

O

From this, we can easily express as

' _2
* 02 l_e 02

c,=— .
622+1n(1+\/1—e_°§ )
2. Analogically to the first point, we equate to zero the derivative

dd (&n)
00,

B) o,
=-2—F|exp| ——2+0,Z |-1-6,Z |, =
00, l: p{ 2 ° } : ] b

ky 2 ky
= —2J(z—Gz)exp{—%+Gzz}¢(z)dz = —ZJ(z—Gz)q)(z—Gz)dz =
k ky

ky—0,

=2 | ydo(y)=-2[0(k -0,)-0(k-0,)]=0.

k=0,
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From here,
k +k, =20,.

= |k2 —02| . Again, considering the impossibility of case k, = k,, we obtain

Proof of Theorem 3
From (5), we obtain

v (&) =2 (p: (x) = p, (x)) . #(25)

where set 4= {x 0 (x)>p, (x)} — is the union of intervals whose endpoints are the roots of the
equation
pe (x)=py ().

This equation has only positive roots as p, (x)>0, Py (x) =0 at x<0. Let us write it out explicitly
and transform it.

1 2 22
exp (x— i) _ 1 exp _(nx+cs§/) ;
G, 20 O, G,X 2(52
4
nx-+In| 22 | =L (6 < 2x1) Ly )+ odine+ 22 |
0, 201 2(52 4
o2 2 .2
2(5111’1X+2611n[6 ] <x2—2x) 1_—(11’1)6) _ 11’1)(?—6162;
S o, 4

2.2
(x® = 2x)~ (XY (nxy? ~302nx+1- 722267 (ﬁj =0.
o, 4 o,

Let us denote the left part of the equation by h(x) and find the derivatives of this function:

2
()= 2(x-1)- (S 2200,
) G, 2(-Inx) 3¢’
h (x)zz—((s—;)2 (xz ), le'

Equality 4’(x)=0 is equivalent to 2x(x—1)= Z(ﬁ)2 Inx+30; , which has exactly two roots for
0,
geometric reasons. Hence, the function 4(x) has two local extrema on (0,+). Let us denote them
by x,,x, and x; <x,.

As lim h(x)=—oo, lim i(x)=+e , the equation A(x)=0 has (0,+) at most three roots. As

x—0+ X—>oo

pe(x)>p,(x) at x<0 andat x>0 p; (x)> p,(x), when h(x)<0,set A can be represented as

A= (=0, x, )| (%,,X3)-#(26)

If the equation has less than three roots, consider x, = x;. Combining (26) with the integral rep-
resentation of the total variation metric (25), we obtain the required statement.

To find the Kolmogorov metric, consider the function g(x)=F, (x)-F, (x). As lim g(x)=0 at the
point at which the maximum of the modulus is reached, we have the equality g’(x) sz (x)=p, (x)=0.

The solutlons of thls equation are the roots of x,x,,x, obtained in (19). Hence,

dy (&m)= maX‘Ei —F,(x ‘ max‘F -F (xi)‘.

i=1,2,3 n
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4 Numerical Analysis
Calculation of the Fortet-Mourier Metric 2
The value of the Fortet-Mourier metric in 14
(12) cannot be expressed in elementary func- NI x;
tions. This is an expected result, which nat- _ |
urally arises when dealing with normal and = v
lognormal distributions: the distribution -21
function (I)() appears, for example, in the 3]

Black-Scholes formula (Black and Scholes,
1973). However, in (12) the Lambert W, which

is much less frequently used function than 00 05 10 15 20 25 30 35 40
®(-). Nevertheless, many mathematical pack- x
ages allow calculating the value of any of its Figure 2. Function graph h(-) at 6, =0, =1

branches, which simplifies the numerical cal-  sy;rce: The authors.
culation of the formula.

Calculation of the Total Variation Metric and the Kolmogorov Metric
Let us discuss here the numerical computation of the total variation metric.

Calculation dy, (§,m) Using Quadrature Methods

One of the approaches for the calculation of the total variation metric is the calculation (see (5)) of
the integral

2 (e () py ()"

using quadrature methods.
As

(e (%)= Py (X)" < (%),

and £~ N (ul,cs1 ) , we will approximate the integral by the proper one
1+3

j(pé = py (XD dx = [ (pg (x)= py (x))* dx.
1-8

As for x<0,
x J.exp ——|dt £ — I—e Xp| —— |dt =— Lexp _x_2 ,
\/21‘5 \2r 21X 2

the approximation error does not exceed

1-8 2
5] o [2 )
2 )dx = 2@ <=L |[Zexp| —— |- #(27
J-pi ( 61) 8 \n p[ 2612i| (27)
Now, let us estimate the accuracy of the integral calculation
1+8

J e () p, (<) e

1-8
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by using the trapezoidal method. The integrand function here is not twice continuously differentiable;
however, (26) indicates that it has no more than three break points. As the function is zero at each
break point, the integration error in the mesh section containing these points does not exceed 3M,A,

where
P (%)= py ()]

Combining this with the standard estimation for the trapezoidal rule (Samarsky and Gulin, 1989),
we obtain

M, = max
xe(1-8,1+9)

h*(28) ,
W< ———M,+3M 1,
12
where W is the error incurred in the integration calculations performed on a grid of size N, h= 2—}5

grid step, and M, = xe(rlng>1<+5) Pe(x)-p", (x)‘

As p, (x)=—¢( = ]considering ¢’ (x)=—x0(x), we find
1

: __x—l x=1) 1) (x=1)* (x-1

S

, . 1 5’
) e
1

max
xe(1-8,1+3)

<——, max
27I(513 xe(1-8,1+3)

Using p, (x)=—¢(lnx HZJ we can find

0,
. G,+d L odX)( L 3d(x) @(x)}-1
p"(x):_xi—cﬁ (). (%)= 0,x° o o, i c; ’
where we designate d(x)= lnx_—uz
0,

Let us assume that 1-0 >0, which will be true in practice as the values of volatilities are usually
small. Let us denote

d = max d(x)=max{

|ln(1—6)—u2| |1n(1+8)—u2|
xe(1-8,1+3) )

b
0, G,

Then,
max p'( )‘ 0, td +d
xe(1-5,1+9) \/EG (1-8?’
1 (d) +1
max 24—+ :
xe(1-5,1+3) ( )‘ V2o, (1-38)° [ 0, c; J

Combining the obtained inequalities, we find

3 2 * *\3
|‘I‘|SL2 %(1+6—2]+;3[2+£+(d )2+1J +
3J2nN? | o o, ) 0,(1-9) o, (o

L 128° 18 oytd
2Nt 6] 62(1-8) |
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Calculation of dy,, (€,m) using the Monte Carlo method

The same integral can be calculated using the Monte Carlo method, as

N G N O
l(pi(x)—pn(x» dx_i(l ” Bl pe (x)dx = [l . Bk

where the expectation is taken with respect to the distribution of a random variable & ~ p, ().
We simulate the independent random variables X,,..., X, ~ p; () and approximate the integral by

n X.
lZ‘Yi ,where Y, = 2(1—M)+ . The mean-square deviation in this case can be expressed as
hn i=1

143 (Xi)

I ¢ 1 )
E(ZZI,YI —dpy, (ﬁaﬂ))z =Var l:ZZYI } < -

i=l

Numerical Solution of a Nonlinear Equation
Let us now discuss the numerical solution of (19). Consider the case that has exactly three roots
(for cases with fewer roots, the algorithm will be similar). As in the proof of Theorem 3,

2.2
h(x) = (x2 _ 2x) —(ﬂ)2(1nx)2 _ 30121nx +1 _%_ 2012111[&}’
G,

O,
2
B (x)=2(x—1)— iy 20X 301
Gfl Xl X2
h//(x)=2+(i)22 H.X;_ )+3(521 .
o, x x

Equation 4”(x)=0 has exactly one root, which means that the function 4(z) has one inflection
point that lies between xl* " x; (Fig. 2), and therefore, it is concave on (O,xl* ) and convex on (x2 ,+<><>).

This ensures that Newton’s method for the root x; with an initial point xl(o) such that xl(o) <X,
converges to the root. For the same reason, Newton’s method will converge to root x; at the initial
point x§°) > x,.Root x, can be localized by the bisection method for [xl,x3:| and then calculated by
Newton’s method.

According to Samarsky and Gulin (1989), if h() is twice continuously differentiable in the neigh-

borhood U, (x*) of root x” of the equation 4(x)=0,and

w(x)).

=———<lm= inf |h'(x),M,= su
q 2m1 : XEU,(xt) ( )| 2 er,Ec*)

Then, Newton’s method converges to x°, and

‘x(k) —x'|<g¥! ‘x(o) - x*‘.#(28)

Thus, for convergence, it is sufficient to assume that in some neighborhood of the root, the second
derivative is bounded and the first one is strictly separated from zero.

At x> xl(o),
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1.0 4
S L R o302
M, <2+2(—) max |+ ,
o, (xl(o) )2 (x))? 0.8 \
and at the localization of the root, the minimum ~_*°]
of the modulus of the first derivative is attained  °
at one of the segment endpoints, where it can be 041
computed explicitly. Therefore, by partitioning the \
segment until g <1, we can achieve a guaranteed 021 o
rate of convergence (28).
012 0;4 0:6 018 le

(%1

Results of Numerical Calculations
The results of metric calculation and optimal  Figure 3. Contour lines dp, (§,M) and optimum values
values o,,6, for the Fortet-Mourier metric at 0,(0,),0,(0,) plots

2 Source: The authors.

6,,0,€(0,1),n;, =L, =—% are presented in

Figs. 3 and 4.

The contour lines show that the distances between random variables &,1 tend to zero as
6, = 0,6, — 0. This is because of the convergence of distributions &,1 to the Dirac measure as the
volatilities tend to zero.

Application of the Estimates to Certain Options
In this section and hereafter, when referring to processes (1) and (2), we imply that they are martin-
gales; that is, (3) is satisfied.

Estimates (7)—(9), as well as the formulas for the metrics, show that the significant parameters
determining the difference between the models are the integrated (or cumulative) volatilities, de-
noted by ¢,,0,.

The application of estimates (7)—(9) to some types of options is shown below.

Put and Call Options
The payoff function of a standard call option f (X;)=(X; —K)" is Lipschitz continuous with the
Lipschitz constant equal to 1. Therefore, from (7),

‘PB (f’T)_PS (f’T)‘ <dpy (XZ{;’X}Y): Xodpy (E»T])-

1.0 1 \ 1.0
0.8 1 0.8 1
0.6 1 0.6 1
S S
0.4 0.4 1
0.2 1 // 0.2 1
0.2 04 0.6 08 1.0 1.0

o1

Figure 4. Contour lines dp, (§,m) and dy (&)

Source: The authors.
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Let us use the data obtained by Bachelier (1900). 0.31
Consider an option with the time to exercise equal 0.2
to one month, for which the integral volatility

equals 6=, =5, = 0.008. Then, we find “: LJM J M »rU w N {l \/

“ 00
By (o) Py (£ T) 30109, 4(29)  Loon U M
-0.2
Exactly the same estimate is true for a put op- 03
tion.
It is also interesting to compare this estimate 041
with that obtained by Schachermayer and Teich- 1,@' 1_03' 1,06' 1,01' 1,@' 1,9' %,Qx' %,03' %,06'
mann (2005) for a call option “at the money” (i.e., LS S S S S S el e
for K=X,): Figure 5. Daily price increments
X063 Source: The authors.

0< P, (fo,T)- P (f,T)< .
s (feT)= By (feT) < 320
For the same value of ¢ on the right-hand side, we get =1.6-107 X,,. Of course, this exceeds the
accuracy of (29) by three orders of magnitude; however, the estimation with the Fortet-Mourier metric
allows us to work with a very wide class of payoff functions and therefore is a more universal method.

Binary Options
Consider a binary call option with payout function

fB,C (XT ) = MHXTzK-
Then, from (8),
‘PB (foc T)-Ps (fB,C,T)‘ < Mdy, (X£.X5).
Substituting the Bachelier’s data, we obtain

1Py (foc T)=Py(feoT) <6107 M.

As it was noted, the total variation metric provides less accurate but still acceptable estimate.
Let us also apply (9):

‘PB (fB,C’T)_PB (fB,C’T)‘SMdK (Xﬁ,X}g)zl.GlO%M.

The Kolmogorov metric gives a more accurate result, which, however, has the same order as that
of the total variation metric.

Estimation of Volatility Using the Oil Market Prices

Let us now try to apply the obtained estimates to the current data. For this purpose, it is nec-
essary to evaluate the parameters 6,,6, of models (1) and (2). Furthermore, we apply statisti-
cal estimation methods assuming that the data satisfy the Bachelier model or the Samuelson
model. For real market prices, the distribution of their increments or the increments of their
logarithms is poorly approximated by the normal distribution and the increments themselves
are not independent (e.g., the effect of volatility clusters occurs). These effects are considered
using time-series models with conditional heterogeneity (ARCH models) that allow to describe
the asset price behavior more precisely. In addition, the processes obtained using these mod-
els, with appropriate normalization, converge to diffusion ones (Gouriéroux, 1997; Th. 5.15).
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It can justify their application to the estimation of parameters of Bachelier and Samuelson
models. However, when comparing these models, we are interested in a rough evaluation of

the volatility®.
Consider price X, as the closing price for WisdomTree WTI Crude Oil from January 2017 to No-

vember 2018 (Figure 5). Let us consider dimensionless values
X
Y, =—Lt=0,1,...,n=335.
XO

According to the Bachelier model, the price increments AY, =Y, -V, , can be represented as
Ax, =0+ G AW, AW, =W, -W,_, ~ N'(0,1).

Thus, as the Wiener process increments are independent, we consider {Ax,} as a sample of random
variables having a normal distribution N (oc,c%).

The maximum likelihood estimate 6 for the standard deviation from the sample obtained from
the Gaussian distribution with two unknown parameters, mathematical expectation and variance, is

~ 1< —
S5 =\/;2<AY,—AY»2,
t=1

where

=

>
=
I

X |~
>
=

This estimate gives an approximate value for the volatility 5, ~0.0144 -
In the Samuelson model, the logarithm increments

A(InY,)=y+0 AW, ~ N(y,cé).
Estimating the standard deviation similarly, we obtain 65 ~0.0150.

Let us construct a confidence interval for the obtained estimates with confidence level ¢.For the
sample Z,,...,Z, obtained from normal distribution with two unknown parameters, the mathemat-

n (Z. —2n)2

1

ical expectation p and variance ¢, the random variable ZT has a distribution of y*(n-1)

i=l1

(e.g., DeGroot and Schervish (2011)). Therefore, to estimate the maximum likelihood ‘¢ of the scale

parameter ¢, we have
~2

Pl vy <n 3 <Yy (=%t (12) =Xt (1) =4

where y,_, () denotes the cumulative distribution function for the law y’(n—1). Let us choose

4 (1-¢ 4 (1+q
Yi= an—l (T)’Yl = Xn]—l (T)

then the corresponding confidence interval for ¢ is
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0.022 A
~/n ~|n
c /—,G — |
|: 'Y2 \/;:| 0.020 -
0.018 1
For the confidence level ¢=0.99 , we obtain X
© 0.016 1
the confidence intervals as follows:
0.014
6, €[0.0131,0.0160],0 €[0.0136,0.0166].#(30) 0.0124
The obtained results are consistent with the 1_@/' 1,@' q_oﬁl 1,@ 1,09‘ 1,«,\| %_0\,‘ %.&I %,oﬁl
normalized values of Chicago Board Options Ex- I O A S S e
change (CBOE) Oil Volatility Index (OVX) over the Figure 6. OVX index

same period of time (Fig. 6). This index is calculated  s,1ce: The authors.
similarly to the volatility index (VIX) but uses oil
options. The OVX values should be interpreted as 5
implicit volatility (i.e., volatility calculated based on 2l
the observed option prices and reflecting appropri-
ate expectations of market volatility behaviour in
the next month). By contrast, the estimates derived 27
from the historical data & 3,8 s reflect the value
of realized volatility; therefore, the comparison of
these values is not entirely correct. Nevertheless,
our goal is to only estimate the order of magnitudes
G U Oy ; thus, it is acceptable for a rough evalu- -2
ation of “engineering character.” 3.

Now we apply the estimate (7) to the call op- 0.0 02 04 06 0.8 10
tion with the time to expiration equal to one
month (7 =30) and obtain Figure 7, Process trajectories X, X, .

X8, X2

Source: The authors.

|Py (fouT) = Py (oo T)| S dyy (X7, X7 ) = 4.7-107 X, (31)
For a binary option with 7' =30 and payout M, according to (8),
| Py (f3:T) = Py (f.T)| < Mddyy, (X7, X7 )= 7.9:107 M #(32)
If we apply (9), we obtain
| Py (f3:T)= Py (f3.T)| < Mdy (X7, X7 )= 2.1:107 M 3#(33)
Values of integral volatility
Let us find at what values of the integral volatility parameter the processes X, X’ remain “close”
to each other.
Using the Ito formula (e.g., @ksendal, 1991), we find that X?, X satisfy the stochastic differential
equations
dX? =c,X,dW,,
dX’ =c X aw,,

where for a small 7 value, the optimal relation between the volatilities is 6, = 0.

70



Proximity of Bachelier and Samuelson Models for Different Metrics

Let us now calculate the variances:

VarX? = X203t [VarX? = X6 4%,

VarX’® = ( \/VarX S /

The variances and standard deviations depend only on the initial price and integral volatility.
Assuming X, =1,6 =0, =0, =1, let us model both processes (Fig. 7) such that they correspond
to the same Wiener process W,. At ¢ =0.2, the standard deviations and the processes themselves
begin to differ appreciably. This value corresponds to the integral volatility value ot =0.45.

For the options considered in the previous section, the integral volatility is approximately equal

to 6T =0.015-/30 =~ 0.082.

Option Price Sensitivity to Volatility
To validate the above-used estimates (31)—(33), the option price must change insignificantly for
small changes in volatility. This requirement is based on the fact that the value ¢ is never exactly
known in the model and its estimation leads to an error when calculating the option price. Let us
estimate the sensitivity vega (see Hull, 2012)
oP(f.T)
~ do

for standard and binary put and call options.
The price of a standard call option in the Bachelier model is calculated as

e X,-K X,-K
Py(forT)=(X, K)@(—GBﬁXOJmBﬁXOq{—GBﬁXO].

Its derivation has been provided by Schachermayer and Teichmann (2005). Similarly, the price of
a standard put option can be determined:

K-X, K-X,
P, (fP,T)=(K—X0)<I>[GB—\/7X0J+GB\/7XO¢(—0].

Let us find the vega coefficient for these options:

S i ol 25

96, o,NTX, )\ o3NTX, o, NTX,
X, - K X, - K
TX-o 0 _ 0
+OuNT X0 LGB\/TXOJ{ 0129\/7)(0} \/_q)(GB\/_XJ

as ¢’(x)=-x¢(x).

Similarly, for a put option,

AP, (f»,T) K-X, | 0P (f.T)
Yo, oV q{% th #(34)
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In the Samuelson model, the prices of standard put and call options are determined using the
Black-Scholes formulas:

1n)l((+;GST 1n)1((0—;o§T
Pi(fo.T)=X®| —*—~—— |-Ko| —"—~ |,
S ordT
ln)[((+;c5ST ln)l((—;csST
S N

The derivatives of these quantities obtained by ¢ are found to coincide. Denoting

ln&+lG§T In i—lozT
K 2 K 2

y+: 9y7: b
o T o T

let us find
0Py (fe.T) _ 9P (/,.T) lnX 1 lnAI/(O 1
o = e = H) ~AaT |Ko(n) AT | #(39

For binary call and put options with payout features,

ch( ) M]IX>K’fBP( T):M]IXT<K'

Accordingly, the price is determined as an expectation with respect to the martingale measure:

Py(foc)=B" fyc(Xy)= MP* (X, > K) M[l q)[GBﬁXoJ}

B K-X,
PB(fB,P)—MﬂD[—GB ﬁXo]’

X, 1

" ~0s7
Ps(fne) =B fuc (Xr) = MP* (X, > K) = M| —£—2—|
K 1, §
In—+_—oiT
X, 2

Py (fB,P)qu) Gs—\/?

From this, we find

aPB(fB,C’T) BP fBP’ K-X,
o o

70 - ln—
aPs(fB,CaT)_ 9Py (fBP’ )—M 1\/_ ( )

aGS B aGS - Mo GS\/T \/_
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Let us now estimate the order of the price calculation error that appears due to an inaccurate meas-
ure of volatility. This error approximately equals to |VAG| , Where V is the option vega coefficient and
Ac is the volatility measurement error. As options «at the money» have the greatest liquidity, their
study is of the greatest interest. Therefore, we further assume that K = X,,7 =30. From (34) and (35)
considering confidence intervals (30), we obtain that for the standard options with the confidence
probability, equal to 0.99, the error approximation of ‘PB (fo.T)-Ps (/. T )‘ calculation does not exceed

\/gXOmaX|AGB|+ﬁ¢(%8sﬁjXOmax|AGS| =7-107 X,

For binary options with K = X,,7 =30, according to (36) and (37), with confidence probability
0.99, the error approximation does not exceed

%Mﬁ¢(%8sﬁ)maX|Acs| ~1.8-10° M.

The resulting estimates differ from (31)-(33) by no more than an order of magnitude. Thus, with
the estimation methods used, the error associated with an inaccurate measurement of the volatility
can make almost the same contribution to the option price as a model change.

In this section, sensitivity estimation is obtained only for the options of a special form. When
applying similar methods for classes of functions, the accuracy of the estimation deteriorates con-
siderably. Let us estimate the vega coefficient in the Bachelier model: if we denote p() as the den-

) . X . . . .
sity of the random variable X_T’ then the price of the European option with payout function f ()
0

and time to expiration 7 can be found as Py(f,T)= Jf(yXO)p(y)dy.

—oo

Based on (1) and (3), the function p(-) can be expressed as p(y)= ! (1)[ -1 ]

o JT o, JT
After changing the variables z = % , we obtain
I 1
P, (f,T)= jf((1+ﬁz)Xo)0—¢[oi]dz.
oo B B

Let us differentiate the integral by parameter . The differentiation performed under the integral

is possible for all 6, >0, as, considering ¢, on each finite interval, the function ( f aap ]() will be
Op

majorized by an integrable function that does not depend on c,.

o7 )= f o)) - o & Jo e & e

Op B) Op B

- #(38)
= o [ {1+ Toue) 3 [o(e)+ ol o

For a bounded function f(-)e B(R),

9P, S”(fji]i[¢(Z)+zz¢(z)]dz=qillfllg #(39)

dG, B

(/.7)
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For the Lipschitz continuous functions, we will use the inequality
17 ()| <[ (X)L Ny =X -

Considering that

o oo

2 4

J- |x|d)(x)afx=E,‘[o|x|3 q)(x)dxzﬁ,

—oo

P,
e

Sci]i (‘f(XO)‘+”f”Lip \/TGB|Z|X0)|:(])(Z)+Z2(])(Z):|dzﬁ
b #(40)

21 (X)) 6
< . +mﬁxo||f||m,

According to estimates (39) and (40), as well as the confidence interval (30), the calculation error
Py(f.T ) for a standard call (put) option in money with 7'=30 does not exceed

6
V2n

\/%maxAc X, =210 X,,
| B| 0 0

and for a binary option with K = X,,,7 =30 does not exceed

AiM=0.22-M.

O3
The resulting accuracy estimates are inferior to those obtained using the exact representation
of the vega coefficient for these options by one or two orders of magnitude, which is expected as a
consequence of the universality of the estimates.

5 Conclusion

The approach based on the use of probability metrics enables the estimation of how much
the transition from one model to another affects the price of a European option with a payout
function from a certain class (represented as a sum of Lipschitz continuous and bounded func-
tions). This price change can be estimated by using an appropriate probabilistic metric and the
norm (or semi-norm) of the payout function in a suitable function space. However, the main
factor affecting the value of the estimation is the integral volatility, at a large value of which
the Bachelier and Samuelson models, which are essentially arithmetic and geometric random
walks, cease to be similar. As expected, the estimates obtained using the Fortet-Mourier met-
ric were the most accurate, whereas the use of the total variation metric and the Kolmogorov
metric led to similarly less accurate results. Moreover, the calculation of the latter two metrics
was reduced to the numerical solution of the same nonlinear equation describing the points of
intersection of normal and lognormal densities.

For the oil market, measures of realized volatility were estimated and confidence intervals were
constructed assuming that the models are true. By calculating the sensitivity (vega coefficient) for
standard and binary options, the error arising in the estimation of model parameters was found to
be comparable to the change in price when the model changed.
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Footnotes
! Apparently, Samuelson was the first economist to propose this modification of the Bachelier model. There-
fore, we use the term “Samuelson’s model.”
2Fora complete list of contracts, see CME Group Advisory Notice 20-171, 2020.
3This follows directly from the Ito formula.
4The assumptions made in Bachelier’s thesis (in an informal way) actually mean that the price process is a
martingale.
SThe term “coupling” is also used in random process theory in a different sense; see, for example, Sverchkov,
and Smirnov (1990).
°The generalized inverse function defined in this manner is also left-continuous. In this case, the random
variable F~! (U), where U is uniformly distributed on (0,1) random variable, has a distribution function
equal to F.
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"This metric forms the basis of the nonparametric criterion of the same name, which is based on the theorem
proved by Kolmogorov (1933).

8 Also, Kantorovich metric, Wasserstein metric, and Dudley metric. The variety of names can be explained by
many equivalent representations (for details, see Riischendorf, https://wwwhttps://www.encyclopediaofmath.
org/index/index.php?title=Wasserstein_metric=Wasserstein_metric).

9 An exposition of the statistical analysis concerning volatility has been presented by Melnikov, Volkov, and
Nechaev (2001), paragraph 4.3. In contrast to this study, we use the maximum likelihood estimation (instead
of an unbiased estimation with uniformly minimal variance) for the volatility, as such estimation for bijec-
tive transformation of the parameter reduces to this transformation of the parameter estimate. Among other
things, this is applicable when determining implicit volatility.
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