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ABSTRACT
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show how conditional value-at-risk pricing can help with regulatory needs inspired by the Basel Accords.
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ОРИГИНАЛЬНАЯ СТАТЬЯ

Приближенное оценивание опционов обмена 
акций через ожидаемые потери
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АННОТАЦИЯ
Как правило, существуют сложности для точного определения уровня ожидаемых потерь в целях управле-
ния риском и для оценивания опционов. В данной работе использована методология ожидаемых потерь 
для оценки опционов обмена акций с помощью некоторых приближений. Эффективность результатов 
наглядно продемонстрирована численными расчетами. Показано, как анализ ожидаемых потерь может 
помочь в выполнении требований постановлений Базельских соглашений III.
Ключевые слова: варианты распространения; условная стоимость, подверженная риску; методы аппрок-
симации; нехватка капитала; Рынок Марграбе
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1 Introduction
In complete markets, every contingent claim is 
replicable in the class of self-financing strate-
gies, and its price is unique. However, there is a 
whole range of arbitrage-free prices in incom-
plete markets or in markets with constraints. 
The minimum price that guarantees no under-
hedging at maturity is equal to the supremum of 
this price range. The resulting strategy is known 
as superhedging (see, for instance, El Karoui and 
Quenez (1995)). An investor can choose to stay 
within the boundaries of perfect hedging and 
completely eliminate potential risks by engaging 
in superhedging strategies. But the cost of such 
a strategy can be too high to be implemented 
successfully. A viable alternative is to accept the 
possibility of a shortfall —  the difference be-
tween the payoff of the contingent claim and the 
replicating portfolio at maturity. This approach 
is usually exploited when there are market con-
straints on the amount of capital that can be 
used for hedging. It has practical benefits as reg-
ulators frequently require financial institutions 
to use a certain amount of funds conservatively 
to be able to meet their obligations. Still, the ex-
tra funds saved on hedging can be used more ag-
gressively in an attempt to earn an extra return. 
Two main approaches have been considered in 
the literature. The first one includes maximis-
ing the probability of a successful hedge. One 
of the earliest works is by Kulldorf (1993). The 
author considered a stochastic control problem 
with a single risky asset whereby an agent aims 
to reach a particular value of fortune on a finite 
time interval before first going broke. Browne 
(1999) expanded upon the results obtained by 
Kulldorf (1993). The author considered a market 
setting with several risky securities and deter-
mined the optimal policy that maximises the 
probability of reaching a certain level of wealth 
before some fixed terminal time. Working in this 
direction, Foellmer and Leukert (1999) trans-
formed the initial problem into the problem 
when an optimal strategy maximises the prob-
ability of successful hedging. The resulting strat-
egy can be viewed as a dynamic version of the 
Value-at-Risk (VaR) concept, a popular measure 
of market risk exposure. The major drawback 
of the approach is that the size of the potential 
shortfall is not taken into account. Developing 
the approach, Foellmer and Leukert (2000) pro-

pose to minimise the amount of expected short-
fall where some loss function 𝑙 measures an in-
vestor’s attitude to the size of the shortfall. The 
key idea is to use the Neyman-Pearson lemma 
to modify the original contingent claim so that 
the modified contingent claim can be perfectly 
hedged. The authors show that the modified 
claim’s perfect hedging strategy is also the op-
timal strategy for the initial minimisation prob-
lem.

The methodology proposed by Foellmer and 
Leukert (2000) leaves some space for a choice 
of the loss function to model the attitude of the 
investor towards the potential shortfall. Value-at-
risk (VaR), being the most popular tool for meas-
uring market risk exposure by practitioners, is 
a natural choice. However, the use of VaR was 
severely criticised for failing to predict the scope 
of the losses during the global financial crisis. The 
most recent Basel III framework has signified the 
major shift from VaR to conditional Value-at-Risk 
(CVaR) as the encouraging measure of risk un-
der stress. According to the Basel Committee on 
Banking Supervision (2016), the use of CVaR “will 
help to ensure a more prudent capture of ‘tail risk’ 
and capital adequacy during periods of significant 
financial market stress.” CVaR has some beneficial 
mathematical properties that VaR lacks. First of all, 
CVaR satisfies the four properties of translation 
invariance, subadditivity, positive homogeneity, 
and monotonicity, making it a coherent measure 
of risk (Artzner et al., 1999)). In general, VaR does 
not satisfy the subadditivity property unless the 
joint distribution function of portfolio losses is 
from a family of elliptical distributions. Another 
advantage of CVaR over VaR is that it is a spectral 
measure of risk (Acerbi, 2002)), meaning that it 
directly relates to the notion of risk-aversion, an 
essential concept in studying optimal consump-
tion problems through the use of utility functions. 
One major drawback of CVaR is that it, in its origi-
nal form, is a hard risk measure to optimise with 
respect to. According to Brutti Righi and Ceretta 
(2016), “despite the advantages of ES, this meas-
ure is less frequently utilised than VaR because 
forecasting ES is challenging due to its complex 
definition”, where ES stands for the same concept 
as CVaR. However, Rockafellar and Uryasev (2000) 
showed that an intrinsic relation between the two 
risk measures exists and developed a methodol-
ogy for optimising an investment portfolio with 
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respect to both VaR and CVaR simultaneously. The central idea is to introduce an auxiliary function 
F  through which VaR and CVaR can be expressed. The properties of convexity and continuous dif-
ferentiability make the function F  “well-behaved” for optimisation tasks. Melnikov and Smirnov 
(2012) applied the ideas of Foellmer and Leukert (2000) to the case where CVaR represents the loss 
function l  that models the attitude of an agent to risk and considered the following dual problem: 
minimisation of CVaR when the initial capital is bounded from above, and minimisation of hedging 
costs subject to a constraint of the amount of CVaR. The authors further used the representation of 
CVaR as in Rockafellar and Uryasev (2000). The explicit results were obtained within the framework 
of the Black-Scholes market with a single risky asset.

This paper aims to take a step in the direction of generalising the results obtained by Melnikov 
and Smirnov (2012) and consider the problem of CVaR-based option pricing within the context of the 
Margrabe market model with two risky assets. The option type of interest is a plain vanilla spread 
option. Spread options are broadly used and appear in a wide range of financial markets: as crack 
spread option in energy markets, as credit spread options in fixed income markets, and as options to 
exchange one asset for another in equity markets (see Margrabe, 1978; Fischer, 1978). The problem 
is further complicated in several aspects. For example, a non-trivial aspect of pricing such options 
requires knowing the probability distribution of the difference between log-normal random vari-
ables that do not admit a satisfactory theoretical expression. Hence, some approximation methods 
are necessary. In particular, the paper utilises the approximate spread option pricing methodology 
proposed by Bjerksund and Stensland (2006) and an approximation based on the assumption that 
the difference between two log-normal random variables is normally distributed. Furthermore, CVaR 
is chosen as the measure of risk to make the paper’s results easily applicable by practitioners in the 
industry.

2 Preliminaries and Existing Approximating Methods
Let ( )( )0( , , ) ,tF t P≥Ω =   be a standard stochastic basis with filtration ( )t  that satisfies the usual 
conditions, and ( ) { }0 ,= Ω ∅ . Assume that T  is the terminal time for all the contingent claims 
traded on this market. Then the dynamics of the two stock price processes ( ) [ ]( )1 1 : 0,S S t t T= ∈  and 

( ) [ ]( )2 2 : 0,S S t t T= ∈  are assumed to satisfy the following stochastic differential equations (SDEs):

        
( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

,

,

dS t S t dt dW t

dS t S t dt dW t

 = µ + σ 
 = µ + σ 

  (1)

where ( ) [ ]( )1 1 : 0,W W t t T= ∈  and ( ) [ ]( )2 2 : 0,W W t t T= ∈  are standard Brownian motion processes 
with correlation coefficient ρ .

The original Margrabe market model only assumed the existence of two risky assets and no bank 
account. Therefore, we take all the stocks traded in this market as already discounted.

We further assume that the market is arbitrage-free and complete and introduce a unique equiv-
alent martingale measure Q  via the Radon-Nikodym derivative:

( ) .
dQ

Z T
dP

=

We say that measure Q  is equivalent to measure P  if the two measures agree on the sets of 
measure 0, i. e., if

( ) ( )0 0.P w Q w> ⇔ >

The process ( ) [ ]( ): 0,Z Z t t T= ∈  takes the following functional form (see, for instance, Melnikov 
(2011)):

       ( ) ( ) ( )
2

1 1 2 2exp ,
2

Z t W t W t t
φ σ

= φ + φ − 
  

  (2)
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where

( )

( )

1 2 2 1
1 2

1 2

2 1 1 2
2 2

1 2

2 2 2
1 2 1 2

,
1

,
1

2 .φ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ = φ + φ + ρφ φ

Under the risk-neutral probability measure Q , the dynamics of the two assets satisfy

     ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

2 2 2 2

,

,

Q

Q

dS t S t dW t

dS t S t dW t

= σ
= σ

  (3)

where ( ) [ ]( )1 1 : 0,Q QW W t t T= ∈  and ( ) [ ]( )2 2 : 0,Q QW W t t T= ∈  are, according to the Girsanov theorem 
(Shreve (2011)), standard Brownian motion processes with correlation coefficient ρ . We can rewrite 
the process Z  under the measure Q  as follows:

      ( ) ( ) ( )
2

1 1 2 2 1 1 2 2exp ,
2

Q QZ t W t W t t
φ

  σ
 = φ + φ − + φ θ + φ θ 
   

  (4)

where
1

1
1

2
2

2

,

.

µ
θ =

σ
µ

θ =
σ

The general payoff function of a spread option is of the following form:

      ( ) ( )1 2[ ] ,S T S T K +− −   (5)

where K  is a deterministic strike price. The exact pricing formula for the special case when 0K =  
was determined independently by Margrabe (1978) and Fischer (1978). The price of such a contin-
gent claim is given by

            ( ) ( ) ( ) ( )1 1 2 20 0 ,p S d S d= Φ − Φ   (5)

where ( )
( )

2
1

2
1

2 1

2 2
1 2 1 2

0
ln

0 2
,

,

2 ,

S T

S
d

T

d d T

  σ+  
=

σ
= − σ

σ = σ + σ − σ σ ρ

and ( )xΦ  is the standard normal cumulative distribution function (CDF). To avoid ambiguity, we will refer 
to the special case of equation (5) as an option to exchange one asset for another one; and as a spread 
option otherwise.

However, it is generally accepted that the probability density function (PDF) of linear combinations of 
log-normal random variables does not have a closed form. Approximations of the distribution of sums of 
log-normal random variables exist in the literature; see, for example, Mehta et al. (2007), Cobb and Rumi 
(2012), Hcine and Bouallegue (2015). Less is known about the distribution of the difference between cor-
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related log-normal random variables. Lo (2012) proposed the Lie-Trotter operator splitting method and 
found that a shifted log-normal process governs the difference between two log-normal random variables. 
A more recent work by Gulisashvili and Tankov (2016) considers the tail behaviour of the distributions of 
linear combinations of log-normal random variables explicitly. The results of the paper allow approximat-
ing the probabilities of tail events directly. The authors further provide insights into how these findings 
can be applied in the domain of risk management.

Thus, only approximate pricing formulas for equation (5) exist. Carmona and Durrleman (2003) provide 
a thorough overview of spread option pricing methodologies. However, while most of the approximations 
to equation (5) that exist in the literature provide accurate estimates, these are not always easily transfer-
able to the domain of risk management due to their complexity. For the purposes of this paper, we will 
work around the idea of approximating the difference between two log-normal random variables using a 
normal distribution. According to Carmona and Durrleman (2003), “computing histograms of historical 
spread values shows that the marginal distribution of a spread at a given time extends on both tails, and 
surprisingly enough, that the normal distribution can give a reasonable fit.” It allows us to price an option 
with a payoff as in equation (5) in the approximate form, similar to equation (6). Consider the difference 
between the two stock prices at maturity:

  ( ) ( ) ( ) ( ) ( ) ( )
2 2
1 2

1 2 1 1 1 2 2 20 exp 0 exp .
2 2

Q QT T
S T S T S W T S W T

   σ σ
− = − + σ − − + σ   

   
  (7)

The above expression represents the difference between two log-normal random variables distri-
bution of which is not log-normal and generally has not been determined. By applying Taylor series 
expansion to the exponents,

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1 2 1 2 1 1 2 2 1 2

2 2

0 0 0 0 0 0 ,
! !

n n

n n

z z
S T S T S S S z S z S S

n n

∞ ∞

= =

− = − + − + −∑ ∑   (8)

where

( )

( )

2 2
21 1

1 1 1 1

2 2
22 2

2 2 2 2

, ,
2 2

, .
2 2

Q

Q

T T
z W T N T

T T
z W T N T

 σ σ
= − + σ ∼ − σ  

 σ σ
= − + σ ∼ − σ  

Equation (8) represents a normal random variable plus an error term in the amount of  
 

( ) ( )1 2
1 2

2 2

0 0
! !

n n

n n

z z
S S

n n

∞ ∞

= =

−∑ ∑ . The price of the option with a payoff as in equation (5) can then be ap-

proximated as follows:
      ( ) ( ) ( ) ( ) ( )1 1 2 2 30 0 ,p S d S d K d= Φ − Φ − Φ   (9)

where

( ) ( )

( ) ( )

1 1 1

2 2 2

3

1 1 2 2
1

1 1 2 2
2

,

,

,

0 0
,

0 0
,

K m
d T

K m
d T

K m
d

S S T

S S T

− −= + σ ρ
σ

− −= + σ ρ
σ

− −=
σ

 σ − σ ρ ρ =
σ

 σ ρ− σ ρ =
σ
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and where ( ) ( ) ( )2
1 2 ~ ,S T S T N m− ≈ γ σ , i. e., where the difference ( ) ( )1 2S T S T−  in the indicator 

function of the option, exercise event is replaced by a normal random variable γ  with mean m  and 
variance 2σ . We can use the moment matching technique to calculate the moments of γ . Consider 
the mean m ,

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2

2 2
1 2

1 1 1 2 2 2

1 2

0 exp 0 exp
2 2

0 0 .

Q

Q Q
Q Q

m E S T S T

T T
E S W T E S W T

S S

 = − = 
      σ σ

= − + σ − − + σ               
= −

The corresponding variance is

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2 2
1 2 1 1 2 2

2 2 2 2 2 2
21 2 1 2 1 2

1 2 1 2

0 exp 0 exp

2
2 0 0 exp [ 0 0 ] .

2 2

Var S T S T S T S T

T T T
S S T S S

 σ = − = σ + σ − 
  σ + σ σ + σ + σ σ ρ
− + − −     

Let us call the approximation in equation (9) as a normal approximation.
The second spread option pricing formula that we are considering in the paper was proposed by 

Bjerksund and Stensland (2006), where the authors consider the following expectation:

               ( ) ( )( )
( ) ( )

( )
2

2
1 2

2

1 2
( )

( )

,

Q

Q
c S T

S T
E S T

E S T S T K I   ≥     

 
 

− − 
 
  

  (10)

where
( )

( )
( )

2

2

2

0 ,

0
.

0

c S K

S
b

S K

= +

=
+

The strategy to exercise the option depends on the price of the long asset at maturity exceeding 
the power function of the short asset times a constant term. The price of the spread option is then 
given by

      ( ) ( ) ( ) ( ) ( )1 1 2 2 30 0 ,p S d S d K d= Φ − Φ − Φ   (11)

where

( )

( )

( )

2 2 2
1 1 2

1 2

1

2 2 2
1 21 2

1 2 2

2

2 2 2
1 1 2

3

2 2 2
1 1 2 2

0
ln

2 2
,

0
ln

2 2
,

0
ln

2 2
,

2 .

S b
b T

c
d

T

S b
b T

c
d

T

S b
T

c
d

T

b b

   σ σ
+ − σ σ ρ+     

=
σ

   σ σ
+ + σ σ ρ+ − σ     

=
σ

   σ σ
+ − +     

=
σ

σ = σ − σ σ ρ+ σ
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The authors showed, via numerical simulations, that equation (11) provides a very accurate lower 
bound to the true price of the contingent claim. It offers better estimates than the widely used Kirk’s 
approximation (1995). Let us call the approximation as the BS-approximation. The derivation of 
equation (11) is in Appendix C.

To compare the two pricing formulas, we have estimated the prices by first varying the volatility of 
the first stock 1σ  and the time to maturity T  parameters. The other parameters used are as follows: 

( ) ( )1 2 20 105, 0 100, 5, 0.2, 0.5S S K= = = σ = ρ = . The results we present in Table 2 (refer to Appendix B). 
Tables 3 and 4 show the absolute and percentage errors’ values compared to Monte Carlo simulations. 
We can infer from the tables that the percentage errors vary significantly depending on the choice of 
market parameters for the proposed normal approximation, whereas the BS-approximation provides 
more accurate estimates. Lower rates of error are associated with a shorter time to maturity and the 
volatility parameters of the two stocks being closer to each other. Both pricing methodologies provide 
the lower bound on the option price compared to Monte Carlo simulations.

CVaR-hedging Methodology Adapted to Model (1)
Consider an ( )T -measurable European style contingent claim ( )1H L Q∈ , i. e. ( )QE H < ∞ , with 

the following payoff structure:

         ( ) ( )1 2[ ] .H S T S T += −   (12)

Suppose that a financial institution has sold this option in the market and received ( ) ( )0 QH E H= , 
the amount required for perfect hedging, given by equation (6). However, the institution decides not 
to use all the proceeds from the sale of the option and thus is faced with the possibility of a shortfall 
at maturity. The question arises: What is the best trading strategy the institution should follow to 
minimise its expected shortfall if it uses CVaR as a measure of risk?

Denote by   the class of admissible self-financing trading strategies ( )( )0 , ,Vπ = ξ η , where ( )0 0V >  
is the amount of initial capital, ξ  and η  denote the number of units of the first and second stocks 
held in portfolio, respectively, such that

        ( ) ( ) ( ) ( ) ( ) ( ) [ ]1 2

0 0

0 , 0, , . .
t t

V t V s dS s s dS s t T P a s= + ξ + η ∀ ∈ −∫ ∫   (13)

Strategy π  is admissible if ( ) [ ]0, 0, , . .V t t T P a s≥ ∀ ∈ −
Denote by  ( )0V  the amount available for hedging such that  ( ) ( )0 0V H< . Then the amount of 

shortfall ( )L π  associated with a given portfolio π  takes the following form:

   ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

0 0

0 .
T T

L H V T H V s dS s s dS sπ = − = − − ξ − η∫ ∫   (14)

Fix a confidence level  , usually 90%, 95% or 99% for practical purposes. We will be minimising 
CVaR  over all strategies π ∈  with the restriction on the amount of capital available, ( ) ( )�0 0V V≤ , i. e.

         
( )

( )  ( )
min,

, 0 0 .

CVaR

V V

π
 π →


π ∈ ≤




  (15)

Denote by  ( )( )0V  the set of all admissible self-financing strategies that use no more initial 
capital than  ( )0V . Let us introduce an auxiliary function F  as follows:

          ( ) ( )(1
, [ ) .

1
F z z E L z + π = + π − − 

  (16)
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According to Rockafellar and Urysev (2000), ( )CVaR π  and ( ),F zπ  are interconnected through 
the following nice property: function ( ),F zπ  is finite and convex with respect to z ∈ , and

     ( ) ( )min , .
z

CVaR F z
∈

π = π
    (17)

Moreover, minimising ( )CVaR π  over all strategies  ( )( )0Vπ ∈  is equivalent to minimizing 
( ),F zπ  over all ( )  ( )( ), 0z Vπ ∈ ×  :

( )( )
( )

( ) ( )( )
( )

� �0 , 0
min min , .

V z V
CVaR F z

π∈ π ∈ ×
π = π


 

 

We arrive at the following equality:

     
 ( )( )

( )
( )( )

( )
0�0

1
min min min ( ) .

1z VV
CVaR z E H V T z +

∈ π∈π∈

   π = + − −  −   


 
  (18)

The expression in equation (18) represents a new optimisation objective. Let us define an auxil-
iary function ( )c z  in the following way:

    ( )
 ( )( )

( )(
0

1
min ) ,

1V
c z z E H V T z +

π∈

 = + − − −  
  (19)

and rewrite equation (18) in terms of the new function ( )c z  as follows:

     
 ( )( )

( ) ( )
0

min min .
zV

CVaR c z
∈π∈

π =
 

  (20)

Let the minimum value of the function ( )c z  for each z  be achieved using strategy

( ) ( ) ( ) ( )( )0, , , .z V z z zπ = ξ η





We then have:

 ( )( )
( ) ( )

0
min ( ) ( , ) ,

V
E H V T z E H V T z z+ +

π∈
− − = − −



where
( ) ( ) ( ) ( ) ( ) ( )1 2

0 0

, 0, , ,
T T

V T z V z s z dS s s z dS s= + ξ + η∫ ∫
 



Suppose that the global minimum of the function ( )c z  is achieved at the point z , i. e.,
( ) ( )min .

z
c z c z

∈
= 



Then the optimal solution to the problem of CVaR  minimization over all  ( )( )0Vπ ∈ , set in 
equation (15), is the strategy

( ) ( ) ( ) ( ){ }0, , , .z V z z zπ = ξ η



    

Now, according to equation (17), we have:

        ( ) ( ).CVaR c zπ =    (21)

It follows that if we can find the strategy π  in an explicit form, then the problem of CVaR  
minimisation will be reduced to the problem of minimisation of the function ( )c z . Observe that for 
each z , the strategy π  is a solution to the following problem
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          ( )
 ( )( )0

( ) min
V

E H V T z +

π∈
− − →


  (22)

Let us note that

( ) ( )( ) [( ) ] .H V T z H z V T+ + +− − = − −

Denote ( )H z +−  by ( )H z . It is evident that ( )H z  is an  -measurable random variable, ( ) ( )1H z L Q∈  
and ( ) 0H z ≥ . We can consider ( )H z  as a contingent claim. Equation (22) can be reformulated in 
the following form:

           ( ) ( )
 ( )( )0

( ) min
V

E H z V T +

π∈
− →


  (23)

This optimisation problem can be interpreted as the problem of expected shortfall minimisation 
over the strategy set  ( )( )0V  of contingent claim ( )H z , which was solved by Melnikov and Smirnov 
(2012). The optimal solution ( )( )0 , ,Vπ = ξ η


  of the problem of expected shortfall minimisation is the 

perfect hedge of the modified contingent claim ( ) ( )( )H z z H z += ϕ −

  or, equivalently, ( ) ( ) ( ) :H z z H z= ϕ



     ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) [ ]1 2

0 0

| t 0, , , ,� 0, , . .,
T T

QE H z V z s z dS s s z dS s t T P a s= + ξ + η ∀ ∈ −∫ ∫
 

   (24)

where
( )

( )
( )

( )

( )  ( )

( )

 ( )
( )

( )

,

inf 0 : ( ) 0 ,

0 ( )

.

( )

dP dP
a z a z

dQ dQ

Q dP
a

dQ

Q dP
a z

dQ

Q dP
a z

dQ

z I z I

a z a E H z I V

V E H z I

z

E H z I

   > =   
  

+
 > 
 

+
 > 
 

+
 = 
 

ϕ = + β

    = ≥ − ≤ 
    

 
 − −
  β =

 
 −
  

 









Moreover, in the context of equation (21), the function ( )c z  admits the following description:

          ( ) ( )( )( ) 



1
1 ,

1

, �

z E z H z z z
c z

z z z

+  + − ϕ − <  −= 
 ≥



   (25)

Equivalently,

( ) ( ) ( ) 



1
,

1

, �

z E H z H z z z
c z

z z z

  + − <  −= 
 ≥





where z  is the solution to the following equation:

       ( ) (0 [ ) .QV E H z + = −    (26)

3 Main Results: Extended Approximate Formulas
To find the price of the optimal hedge, in CVaR sense, or, equivalently, to construct a replicating port-
folio with the lowest level of CVaR , we must first find z  in equation (26). To do it, we will be using the 
proposed normal approximation, and the BS-approximation described above. Once we have determined 

On Approximate Pricing of Spread Options via Conditional Value-at-Risk



36

the unique value z , we can minimise equation (25) numerically, using the Monte Carlo simulation 
technique. Suppose that z  is the global minimum of the function ( )c z . Noting that the distribution of 
Brownian motion is atomless, the problem is reduced to evaluating the following expectation:
   

    ( )( ) ( ) ( )( )
( )1 2 .Q Q dP

a z
dQ

E H z E S T S T z I
+

 > 
 

 
 = − −
  

 



    (27)

Depending on the chosen approximating method, the following two theorems provide the neces-
sary tools for constructing a hedge with the lowest level of CVaR :

Theorem 1. Approximating the distribution of the difference between two log-normally distributed 
stock prices as a normal distribution, the price p  of setting up a replicating portfolio for a spread option 
at any time t T≤  can be estimated as follows:

                                  ( )  ( ) ( )  ( )  ( )2 2 2
1 2 31 2 31 3 2 3 30 , , 0 , , , , ,p S x y S x y z x y= Φ ρ − Φ ρ − Φ ρ

  (28)

where












( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( )

1 1 1

1 1 4

2 2 2

2 2 5

3

3

1 1 1 2 2

2 1 1 2 2

3

2 1
4

2 1
5

2 2
1 2 1 2

2
2 1 2

1
1 1 2

2

,

,

,

,

,

,

0 0 ,

0 0 ,

,

,

,

2 ,

0 ,

0 ,

2

m z
x T

y K T

m z
x T

y K T

m z
x

y K

T
S S

T
S S

a b

T
a S

T
b S

K

φ

φ

φ

φ

φ

φ

−= + σ ρ
σ

= + σ ρ
−= + σ ρ
σ

= + σ ρ
−=
σ

=

ρ = σ − σ ρ
σ

ρ = σ ρ− σ
σ

−ρ =
σ

ρφ + φ
ρ = −

σ

φ + φ ρ
ρ = −

σ

σ = φ + φ + ρφ φ

σ
= φ ρ+ φ

σ

σ
= φ + φ ρ

σ

σ
+ φ

=















( )

( ) ( ) ( )

1 1 2 2

2
1 2

1
ln

,

, ,

T
a z

T

S T S T N m

φ

   
θ + φ θ +     

σ

− ≈ γ ∼ σ

 
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and ( )2
1 2x ,x ,Φ ρ  is the CDF of the bivariate standard normal distribution with correlation .ρ

Proof . We want to find the price of the option with the following payoff

( ) ( )
( )1 2( ) .dP

a z
dQ

S T S T K I+
 > 
 

− −
 

Let us first consider the expression in the indicator function:

                  

( ) ( ) ( ) ( )

( ) ( ) ( )

{ }

2

1 1 2 2 1 1 2 2

2

1 1 2 2

1 1 2 2

1
exp

2

1
ln

2

,

Q Q

Q Q

dP
a z W T W T T

dQ a z

T
a zW T W T

T T

K

φ

φ

φ φ

   σ    > = > φ + φ − + φ θ + φ θ    
       

  σ  
 + φ θ + φ θ +     φ + φ  

= < 
σ σ 

 
 

= ∈<

 

 

 



  (29)

where

( ) ( )

( ) ( ) ( )

( )

( )

( )

1 1 2 2

2

1 1 2 2

1 2 2 1
1 2

1 2

2 1 1 2
2 2

1 2

2 2
1 2 1 2

1
1

1

2
2

2

0,1 ,

,

1
ln

2
,

,
1

,
1

2 ,

,

.

Q

Q Q
Q

W T
N

T

W T W T
W T

T
a z

K
T

φ

φ

φ

φ

∈= ∼

φ + φ
=

σ

 σ  
+ φ θ + φ θ +     

=
σ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ µ ρ− σ µ
φ =

σ σ −ρ

σ = φ + φ + φ φ ρ

µ
θ =

σ
µ

θ =
σ





 



Replacing ( ) ( )1 2S T S T−  by ( )2,N mγ ∼ σ , we obtain:
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( ) ( )( )
( )

( ) ( )( ) ( ) ( ){ } ( )

( ) { } { } ( ) { } { } { } { }

( ) ( )( ) { } { }

( )

1 2

1 2

1 2

1 2

2
1

1 1 1

2
2

0 exp exp
2

0 exp

Q dP
a z

dQ

Q dPS T S T K
a z

dQ

Q Q QK K KK K K

Q
Q K K

E S T S T K I

E S T S T K I I

E S T I I E S T I I KE I I

T
S E W T I I

S

+

 > 
 

 − > > 
 

γ > γ > γ >∈< ∈< ∈<

−γ <− ∈<

 
 − −
  

 
 = − −
  

     = − −          
 σ  = − σ     

σ
− −

 

 

  



( )( ) { } { } { } { }
2

2 2exp .
2

Q
Q QK KK K

T
E W T I I KE I I−γ <− −γ <−∈< ∈<

    σ −        

  (30)

Consider the first term in equation (30):

                                 

( ) ( )( ) { } { }

( ) ( ) { } { }

2
1

1 1 1

2
1

1 1

0 exp exp
2

0 exp exp ,
2

Q
Q K K

Q X K Y K

T
S E W T I I

T
S E Z I I

−γ <− <

<− <

 σ  − σ =     

 σ  − −     





ò

  (31)

where

( ) ( )
( )

( ) ( ) ( )

2
1 1 1 1

2

1 1 2 2

0, ,

, ,

0,1 .

Q

Q Q

Z W T N T

X N m

W T W T
Y N

Tφ

= −σ ∼ σ

= −γ ∼ − σ

φ + φ
= ∼

σ

To apply the two-asset lemma (see Appendix A) to the expectation term, we need to estimate the 
correlation coefficients 

1 1
,Z X Z Yρ ρ  and XYρ . Consider XYρ ,

2

.xy
XY

x y

σ
ρ =

σ σ

Since ( )0,1Y N∼ ,

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

2

1 1 2 2 1 1 2 2
2 1

2
2

2 1 1 2 2 2 2 2 2

2
1

1 1 1 1 1 2 2 1 1

1
0 exp exp exp

2

1
0 exp exp exp

2

xy Q

Q Q Q Q

Q Q

Q Q Q Q
Q

Q Q Q Q
Q

E XY

W T W T W T W T
E S T E S T

T T

T
S E W T W T W T W T

T

T
S E W T W T W T W T

T

φ φ

φ

φ

σ =

   φ + φ φ + φ
   = −

σ σ      
 σ  = − φ σ + φ σ   σ 

 σ  − − φ σ + φ σ   σ 
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Opening the brackets and calculating the expectations, the above yields:

( ) ( ) ( ) ( )2 1
2 1 2 1 1 20 0 .

T T
S S

φ φ

σ σ
φ ρ+ φ − φ + φ ρ

σ σ

To get the correlation, we need to divide it by x yσ σ  to get:

,XY

a b−ρ =
σ

where

( ) ( )

( ) ( )

2
2 1 2

1
1 1 2

0 ,

0 .

T
a S

T
b S

φ

φ

σ
= φ ρ+ φ

σ

σ
= φ + φ ρ

σ

Now consider 
1Z Xρ ,

1

1

1

2

.
z x

Z X
z y

σ
ρ =

σ σ

Since ( )2
1 10,Z N T∼ σ ,

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1

2
1

2 2
1 2

1 1 1 1 1 2 2 2

2
1

1 1 1 1 1

2
2

2 1 1 2 2

0 exp 0 exp
2 2

0 exp exp
2

0 exp exp .
2

z x Q

Q Q Q
Q

Q Q
Q

Q Q
Q

E Z X

T T
E W T S W T S W T

T
S E W T W T

T
S E W T W T

σ =

     σ σ = σ − + σ − − + σ            
 σ  = − σ σ    

 σ  − − σ σ    

Opening the brackets and calculating the expectations,

( ) ( )
1

2 2
1 1 2 1 20 0 .z x S T S Tσ = σ − σ σ ρ

Similarly, by dividing by x yσ σ  we get the correlation:

( ) ( )( )
1 1 1 2 20 0 .Z X

T
S Sρ = σ − σ ρ

σ

Let us now consider 
1Z Yρ ,

1

1

1

2

.
z y

Z Y
z y

σ
ρ =

σ σ

Since both random variables 1Z  and Y  have zero expectation,
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( )

( ) ( ) ( )
1

2
1

1 1 2 2
1 1 .

z y Q

Q Q
Q

Q

E Z Y

W T W T
E W T

Tφ

σ =

  φ + φ = −σ  
 σ  

Simplifying, we get:

1

1 2 .Z Y
φ

φ + ρφ
ρ = −

σ

We can now apply the two-asset lemma to equation (31) to get

   
( ) ( ) { } { }

( )  ( )

2
1

1 1

2
1 11

0 exp exp
2

0 , , ,

Q X K Y K

XY

T
S E Z I I

S x y

<− <

 σ  − −     

= Φ ρ



  (32)

where



1
1 1 ,Z X

m K
x T

−= + σ ρ
σ



11 1 ,Z Yy K T= + σ ρ ( ) ( )( )
1 1 1 2 20 0 ,Z X

T
S Sρ = σ − σ ρ

σ 1

1 2 ,Z Y
ρ

φ + φ ρ
ρ = −

σ  

 
,XY

a b−ρ =
σ

( ) ( )2
2 1 20 ,

T
a S

φ

σ
= φ ρ+ φ

σ
( ) ( )1

1 1 20 ,
T

b S
φ

σ
= φ + φ ρ

σ
( )

2

1 1 2 2

1
ln

2
T

a z
K

T

φ

φ

 σ  
+ φ θ + φ θ +     

=
σ

 



Now consider the second term in equation (30):

   ( ) ( )( ) { } { }
2
2

2 2 20 exp exp ,
2

Q
Q K K

T
S E W T I I−γ <− ∈<

 σ  − σ      

  (33)

where

( ) ( )2
2 2 2 10,� ,QZ W T N T= −σ ∼ σ ( )2, ,X N m= −γ ∼ − σ

( ) ( ) ( )1 1 2 2 0,1 .
_

Q QW T W T
Y N

T

φ + φ
= ∼

σ φ

We need to estimate the correlation coefficients 
2Z Xρ  and 

2Z Yρ . Proceeding in the same manner 
as for equation (31), we evaluate the correlation coefficients to be as follows:

( ) ( )( )
2

2

1 1 2 2

1 2

0 0 ,

.

Z X

Z Y

T
S S

φ

ρ = σ ρ− σ
σ

φ ρ+ φ
ρ = −

σ

Applying the two-asset lemma,

   
( ) ( ) { } { }

( )  ( )

2
2

2 2

2
2 22

0 exp exp
2

0 , , ,

Q X K Y K

XY

T
S E Z I I

S x y

<− <

 σ  − −     

= Φ ρ



  (34)
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where



2
2 2 ,Z X

m K
x T

−= + σ ρ
σ



2 2 2 ,Yy K T Z= + σ ρ ( ) ( )( )
2 1 1 2 20 0 ,Z X

T
S Sρ = σ ρ− σ

σ 2

1 2 .Z Y
φ

φ ρ+ φ
ρ = −

σ

The last term in equation (30) is simply

          { } { }
 ( )2

3 3, , ,Q XYK K
KE I I K x y−γ <− ∈<

  = Φ ρ  

  (35)

where



3 ,
m K

x
−=
σ



3 .y K= 

Combining all three terms, equations (32), (34) and (35), we get the stated formula in equation (28).
Alternatively, using the BS-approximation:
Theorem 2. Using the BS-approximation for the price of the spread option, the price p  of setting up 

the replicating portfolio at any time t T≤  can be estimated as follows:

   ( )  ( ) ( )  ( )  ( )2 2 2
1 2 31 2 31 3 2 3 30 , , 0 , , , , ,p S x y S x y z x y= Φ ρ − Φ ρ − Φ ρ

  (36)

where

 

1 1 1 ,x K T= + σ ρ 

1 1 4 ,y K T= + σ ρ
 

2 2 2 ,x K T= + σ ρ 

2 2 5 ,y K T= + σ ρ
 

3 ,x K= 

3 ,y K=   

 ( )1 2
1 2 2 2

1 1 2 2

,
2

b T

T b T b T

σ − σ ρ
ρ =

σ − σ σ ρ + σ

( )1 2
2 2 2 2

1 1 2 2

,
2

b T

T b T b T

σ ρ− σ
ρ =

σ − σ σ ρ + σ

( )2 1 2 2 1 1 1 2
3 2 2 2

1 2 1 2

,
2

b b T

T b T b Tφ

σ φ ρ+ σ φ − σ φ − σ φ ρ
ρ =

σ σ + σ − σ σ ρ
 

 
2 1

4 ,
φ

φ ρ+ φ
ρ = −

σ
2 1

5 ,
φ

φ + φ ρ
ρ = −

σ
2 2
1 2 1 22 ,φσ = φ + φ + ρφ φ

( )2 0
,

S
b

c
= ( )2 0 ,c S z= +   

 
 ( )

2

1 1 2 2

1
ln

2
,

a z
K

T

φ

φ

 σ  
+ σ φ + σ φ +     

=
σ

 




( )
( )

2 2 2
1 1 2

2 2 2
1 2 1 2

0
ln

2 2
.

2

S T b T

a z
K

T b T bT

  σ σ
− +  

=
σ + σ − ρσ σ



Proof . We need to estimate the following expectation:

( ) ( )( )
( )

( ) ( )( )
( )( )( )

2
1

2

1 2 .
b

b
Q

Q dP
a z c S TdQ S T

E S T

E S T S T K I I   >     ≥ 
 

 

 
 
 − − 
 
  

 

The first indicator function has already been considered in equation (29); the term in the second 
indicator function was considered in equation (45) of Appendix C. We can rewrite the above expecta-
tion in the following way:
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                 ( ) { } ( ) { } { }1 1 1

2 2 2

1 2 .Q Q QK K K
K K K

E S T I I E S T I I KE I I     ≤ ≤ ≤     ≤ ≤ ≤  
∈ ∈ ∈

  
         
∈ ∈ ∈

     
     − −     
          

  

  (37)

We can apply the two-asset lemma to each of the three terms in equation (37). Before that, how-
ever, we need to estimate the correlation coefficient between 1∈  and 2∈ ,

( ) ( ) ( ) ( )

( )

1 2

1 1 2 2 2 2 1 1

2 2 2
1 1 2 2

2 1 2 2 1 1 1 2

2 2 2
1 2 1 2

2

,
2

Q Q Q Q

Q

W T W T bW T W T
E

T T b T b T

b b T

T b T b T

φ

φ

∈ ∈

   φ + φ σ − σ ρ = =    σ σ − σ σ ρ + σ    
σ φ ρ+ σ φ − σ φ − σ φ ρ

=
σ σ + σ − σ σ ρ

where we used the fact that

( ) ( )2 ,E W T Var W T T   = =  

and

( ) ( )] [ ( ) ( )1 2 1 2 .E W T W T Cov W T W T T = = ρ 

Combining this result with the results of equations (29) and (45), and applying the two-asset lemma 
to the first term of equation (37),

    ( ) { } ( )  ( )
1

2

2
1 11 1 30 , , ,Q K

K

E S T I I S x y ≤  ≤ 
 

∈
∈



 
  = Φ ρ 
  



  (38)

where




( )

( )

1 1 1

1 1 4

1 2
1 2 2 2

1 1 2 2

2 1 2 2 1 1 1 2
3 2 2 2

1 2 1 2

2 1
4

,

,

,
2

,
2

.

x K T

y K T

b T

T b T b T

b b T

T b T b Tφ

φ

= + σ ρ

= + σ ρ

σ − σ ρ
ρ =

σ − σ σ ρ + σ

σ φ ρ+ σ φ − σ φ − σ φ ρ
ρ =

σ σ + σ − σ σ ρ

φ ρ+ φ
ρ = −

σ



The second term of equation (37) evaluates to

    ( ) { } ( )  ( )
1

2

2
2 22 2 30 , , ,Q K

K

E S T I I S x y ≤  ≤ 
 

∈
∈



 
  = Φ ρ 
  

   (39)

where
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



( )

2 2 2

2 2 5

1 2
2 2 2 2

1 1 2 2

2 1
5

,

,

,
2

.

x K T

y K T

b T

T b T b T

φ

= + σ ρ

= + σ ρ

σ ρ− σ
ρ =

σ − σ σ ρ + σ

φ + φ ρ
ρ = −

σ



The last term of equation (37) is

         { }
 ( )

1
2

3 3 3, , ,Q K
K

KE I I K x y ≤  ≤ 
  

∈
∈

 
  = Φ ρ 
  



  (40)

where





3

3

,

.

x K

y K

=

=



Combining equations (38), (39) and (40), we get the formula stated in equation (36).
The existence of closed-form formulas for estimating CvaR-optimal option prices, as per Theorems 

1 and 2, allows constant rebalancing of the replicating portfolio at any moment in time t T≤ , which 
is vital for risk management purposes.

5 Numerical Illustration and Application to Regulatory Needs
To see how the methodology would apply to the real market data, we have downloaded the closing 
price data for Apple Inc. and S&P500 index from 1st January 2013 to 28th March 2018, with overall 
1319 observations. Having transformed the prices to logarithmic returns and having annualised the 
returns, we obtained the following standard deviations: 1 20.24, 0.12σ = σ = , where subscript 1  refers 
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Figure 1. CVaR for varying level of initial capital at 99% confidence level
Source: The authors.
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to Apple Inc. and subscript 2  to S&P 500 index. The annualised returns are: 1 20.14, 0.11µ = µ = . An 
investor expects to earn a higher rate of return on Apple Inc. to compensate for higher volatility. The 
estimated correlation coefficient over the period was 0.5068ρ = . We have standardised the initial 
prices to be equal

( ) ( )1 20 0 78.4329S S= =

The institution has sold an option to exchange a single unit of S&P500 for the unit of stock of 
Apple Inc. with an expiration date of one year from now. The price required for complete hedging is 
determined via equation (6) to be equal to 6.49p = . We estimate CVaR at 99%. Refer to Fig. 1, where 
we plot the level of 0.99CVaR  for varying levels of the initial capital available as a percentage of the 
arbitrage-free price.

Table 1 summarises the results of the simulation. We can see that the normal approximation 
underestimates CVaR for all levels of initial capital available. It is an expected result given that the 
normal approximation provides lower price estimates when compared with the BS-approximation. We 
note that both approaches offer only an approximation to the true level of CVaR because there is no 
exact pricing formula for equation (5).

We can further supplement our analysis by looking at CVaR-efficient portfolios from a regulatory 
point of view. Suppose that a regulator in the market requires the member institutions to keep a 

Table 1
CVaR at 99% confidence level

Capital Available, %
CVaR

Normal approximation BS-approximation

0 68.9700 69.0788

10 26.0501 27.4378

20 18.9578 19.8209

30 14.4591 15.1719

40 11.1611 11.7549

51 8.4916 9.0196

61 6.2363 6.7189

71 4.2763 4.7194

81 2.5743 2.9413

91 0.9873 1.3326

100 0.0000 0.0000

Source: The authors.
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certain amount of capital in reserves depending on the estimated level of CVaR. Let β  be the neces-
sary amount of capital per unit of CVaR exposure. Denote by

      ( )( )  ( )( )  ( )0 0 0V CVaR V Vλ = β +    (41)

the total amount of capital to be kept in reserves provided that the amount of  ( )0V  has been used 
for hedging purposes at the significance level  . Then the CVaR  of an unhedged position is ( )0 .λ  
Introduce the following ratio:

                                 
 ( )( )
( )

0
.

0

Vλ
Θ =

λ





  (42)

The ratio tells us the relative attractiveness of a CVaR-efficient portfolio. Where 1Θ < , engaging 
in CVaR-efficient hedging allows the institution to use less capital to meet the regulatory requirement 
as compared to an unhedged position and vice versa. We apply this line of analysis to our Apple Inc. 
and S&P500 portfolio at a 99%  significance level, and the results we show in Fig. 1.

The above figure clearly indicates that the higher the regulatory requirements, the more attractive 
a CVaR-efficient portfolio is compared to a portfolio with no hedging. Also, the graph of the relative 
attractiveness of the CVaR-efficient portfolio as a function of the level of initial capital used is U-shaped, 
meaning that the relative effectiveness is more sensitive to changes in the capital employed in the 
tails of the graph. The reader can clearly see this effect from Table 1. The concavity of the graph in the 
markets with regulatory requirements means that we can optimise concerning the amount of initial 
capital to be used to maximise the replicating portfolio’s effectiveness.

6 Conclusion
In this paper, we have investigated the problem of constructing CVaR-efficient portfolios under capital 
constraints in the Margrabe market model setting. The two different spread option pricing formulas 
used provided comparable results. However, neither of the two methods provides an exact solution 
since no closed form PDF for the difference between two log-normal random variables exists to this 
moment.

 
Figure 2. The relative attractiveness of CVaR-efficient portfolio at 99% confidence level

Source: The authors.

On Approximate Pricing of Spread Options via Conditional Value-at-Risk



46

Acknowledgments
The research was supported by the NSERC Discovery Grants #5901 and RES 0043487.

References
Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of 

Banking & Finance, 26(7), 1505–1518.
Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 

203–228.
Basel Committee on Banking Supervision. (2016). Minimum capital requirements for market risk. www.bis.org/

bcbs/publ/d352.pdf (accessed 4th December 2018).
Soubra, A., & Bastidas-Arteaga, E. (2014). Advanced Reliability Analysis Methods . 10.13140/RG.2.1.1697.7124.
Bjerksund, P., & Stensland, G. (2006). Closed form spread option valuation. NHH Dept. of Finance & Manage-

ment Science Discussion Paper No. 2006/20. https://ssrn.com/abstract=1145206
Browne, S. (1999). Reaching goals by a deadline: Digital options and continuous-time active portfolio manage-

ment. Advances in Applied Probability, 31(02), 551–577.
Brutti Righi, M., & Ceretta, P. (2016). Shortfall deviation risk: An alternative for risk measurement. The Journal 

of Risk, 19(2), 81–116.
Carmona, R., & Durrleman. (2003). V. Pricing and hedging spread options. SIAM Review, 45(4), 627–685.
Cobb, B., & Rumi, R. (2012). Approximating the distribution of a sum of log-normal random variables. Sixth 

European Workshop on Probabilistic Graphical Models, Granada, Spain.
El Karoui, N., & Quenez, M. (1995). Dynamic programming and pricing of contingent claims in an incomplete 

market. SIAM Journal on Control and Optimization, 33(1), 29–66.
Fischer, S. (1978). Call option pricing when the exercise price is uncertain, and the valuation of index bonds. 

The Journal of Finance, 33(1), 169–176.
Foellmer, H., & Leukert, P. (1999). Quantile hedging. Finance and Stochastics, 3(3), 251–273.
Foellmer, H., & Leukert, P. (2000). Efficient hedging: Cost versus shortfall risk. Finance and Stochastics, 4(2), 

117–146.
Hcine, M., & Bouallegue, R. (2015). On the approximation of the sum of lognormals by a log skew normal dis-

tribution. International Journal of Computer Networks & Communications, 7, 135–151.
Kirk, E. (1995). Correlation in the energy markets. In Managing Energy Price Risk, (71–78). London: Risk Pub-

lications and Enron Capital & Trade Resources.
Kulldorff, M. (1993). Optimal control of favorable games with a time limit. SIAM Journal on Control and Opti-

mization, 31(1), 52–69.
Lo, C. F. (2012). The sum and difference of two log-normal random variables. Journal of Applied Mathematics, 

2012(Article ID 838397), 1–13. https://doi.org/10.1155/2012/838397
Margrabe, W. (1978). The value of an option to exchange one asset for another. The Journal of Finance, 33(1), 

177–186.
Mehta, N. B., Molisch, A., Wu, J., & Zhang, J. (2007). Approximating a sum of random variables with a log-

normal. IEEE Transactions on Wireless Communications, 6(7), 2690–2699.
Melnikov, A. (2011). Risk Analysis in Finance and Insurance, 2nd ed. Boca Raton, Florida: Chapman & Hall/CRC.
Melnikov, A., & Smirnov, I. (2012). Dynamic hedging of conditional value-at-risk. Insurance: Mathematics and 

Economics, 51(1), 182–190.
Molisch, A. (2013), Wireless Communications . Hoboken, N.J.: Wiley.
Rockafellar, R., & Uryasev, S. (2000). Optimisation of conditional value-at-risk. The Journal of Risk, 2(3), 21–41.
Shreve, S. (2011). Stochastic Calculus for Finance II . New York: Springer.

On Approximate Pricing of Spread Options via Conditional Value-at-Risk



47

APPENDIXES
Appendix A Two-asset lemma

Lemma 1. Let ( ) ( )2, , ,x x y yX N Y N∼ µ σ ∼ µ σ  and ( )2,z zZ N∼ µ σ  be three normally distributed random 

variables with correlations , ,XY XZ YZρ ρ ρ  . Then,

    ( ) { } { }
 ( )

2
2exp exp , , ,

2
z

z XYX x Y yE Z I I x y< <

 σ − = −µ + Φ ρ    
  (43)

where
 ,x

z XZ
x

x
x

− µ
= + σ ρ

σ


y
z YZ

y

y
y

− µ
= + σ ρ

σ

and 2Φ  denotes the two-dimensional normal cumulative distribution function (see Melnikov (2011)) .

Appendix B Comparison results for normal approximation and BS-approximation

Table 2
Spread option: value approximation. The different formulas are from top to bottom: Monte-Carlo simulation, BS-
approximation, the normal approximation

 1σ
T

0.5 1 3 5

0.1

4.8886 6.9092 11.937 15.372

4.885 6.9041 11.928 15.361

4.8399 6.8061 11.404 14.228

0.15

5.1504 7.2788 12.573 16.188

5.1447 7.2708 12.559 16.17

5.1124 7.1577 12.103 15.121

0.2

5.7911 8.1831 14.127 18.179

5.7833 8.172 14.108 18.153

5.7503 8.0437 13.445 16.897

0.25

6.7008 9.4663 16.327 20.99

6.6925 9.4544 16.305 20.959

6.6062 9.2315 15.358 18.908

0.3

7.7852 10.994 18.937 24.313

7.7771 10.983 18.913 24.277

7.7153 10.651 17.074 20.852

Source: The authors.
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Table 3
Spread option: absolute error

 1σ
T

0.5 1 3 5

0.1

0 0 0 0

–0.0036 –0.0051 –0.009 –0.011

–0.0487 –0.1031 –0.533 –1.144

0.15

0 0 0 0

–0.0057 –0.008 –0.014 –0.018

–0.038 –0.1211 –0.47 –1.067

0.2

0 0 0 0

–0.0078 –0.0111 –0.019 –0.026

–0.0408 –0.1394 –0.682 –1.282

0.25

0 0 0 0

–0.0083 –0.0119 –0.022 –0.031

–0.0946 –0.2348 –0.969 –2.082

0.3

0 0 0 0

–0.0081 –0.011 –0.024 –0.036

–0.0699 –0.343 –1.863 –3.461

Source: The authors.

Table 4
Spread option: percentage error

 1у
T

0.5 1 3 5

0.1
0.00% 0.00% 0.00% 0.00%

–0.07% –0.07% –0.08% –0.07%
–1.00% –1.49% –4.47% –7.44%

0.15
0.00% 0.00% 0.00% 0.00%

–0.11% –0.11% –0.11% –0.11%
–0.74% –1.66% –3.74% –6.59%

0.2
0.00% 0.00% 0.00% 0.00%

–0.13% –0.14% –0.13% –0.14%
–0.70% –1.70% –4.83% –7.05%

0.25
0.00% 0.00% 0.00% 0.00%

–0.12% –0.13% –0.13% –0.15%
–1.41% –2.48% –5.93% –9.92%

0.3

0.00% 0.00% 0.00% 0.00%

–0.10% –0.10% –0.13% –0.15%

–0.90% –3.12% –9.84% –14.24%

Source: The authors.
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Appendix C BS-approximation
Consider the following expression:

   

( ) ( )( )
( ) ( )( )

( )( )( )

( )
( ) ( )( )

( )( )( )
( )

( ) ( )( )
( )( )( )

( ) ( )( )
( )( )( )

2
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2

2 2
1 1

2 2

2
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2

1 2

1 2

.

b

b
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b b

b b
Q Q

b

b
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Q
c S T

S T
E S T

Q Q
c S T c S T

S T S T
E S T E S T

Q
c S T

S T
E S T

E S T S T K I

E S T I E S T I

E KI

 
 
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 

 

   
   

≥ ≥   
   

   

 
 

≥ 
 

 

 
 
 − − 
 
  

   
   
   = −   
   
      

 
 
 −  
 
  

  (44)

The term in the denominator is

( )( )( ) ( )( ) ( )( ) ( )( ) ( )22
22

2 2 2 2 2

1
0 exp exp 0 exp .

2 2

b b bQ
Q Q

b b TbT
E S T S E bW T S

   σ −σ  = − σ =        

Let us now simplify the term in the indicator function:

       ( ) ( )( )
( )( )( )

2
1

2

,

b

b

Q

c S T
S T

E S T
≥ ( ) ( ) ( )

2 2 2
1 2

1 1 1 2 20 exp exp ,
2 2

Q QT b T
S W T c bW T

   σ σ
− + σ ≥ − + σ      

     

                                          
( ) ( ) ( )

2 2 2
1 1 2

2 2 1 1

0
ln .

2 2
Q QS T b T

bW T W T
c

  σ σ
− + ≥ σ − σ  

  (45)

Since

( ) ( ) ( )2 2 2
2 2 1 1 1 1 2 20,� 2 ,Q QbW T W T N T b T b Tσ − σ ∼ σ − σ σ ρ + σ

the inequality in equation (45) is equivalent to 3,d∈≤

where

( ) ( ) ( )2 2 1 1

2 2 2
1 1 2 2

0,1 ,
2

Q QbW T W T
N

T b T b T

σ − σ
∈= ∼

σ − σ σ ρ + σ

( ) 2 2 2
1 1 2

3 2 2 2
1 1 2 2

0
ln

2 2
.

2

S T b T

c
d

T b T b T

  σ σ
− +  

=
σ − σ σ ρ + σ

Consider the first term in the original expectation, i. e. equation (44),
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                    ( )

( ) ( )( )
( )( )( )

( ) ( )( ) { }3
2

1

2

2
1

1 1 1 10 exp exp
2b

b
Q

Q
Q Q d

c S T
S T

E S T

T
E S T I S E W T I ∈≤ 

 
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 
 

 
 

 σ   = − σ      
  

  (46)

Applying the two-asset lemma to the expectation term,

( )( ) { }
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2
1 21

1 1 3 2 2 2
1 1 2 2

exp exp ,
2 2

Q
Q d

b TT
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T b T b T
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   σ − σ ρσ σ = Φ +       σ − σ σ ρ + σ 

which leads to
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1 1 10 ,
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1 3 1 1 ,d d T= + σ ρ
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1 2 2 2
1 1 2 2

.
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b T
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σ − σ ρ
ρ =

σ − σ σ ρ + σ

Let us consider the second term of equation (44),
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Applying the two-asset lemma again, we have
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( ) ( )
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1

2
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�
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where

2 3 2 2 ,d d T= + σ ρ
( )1 2

2 2 2 2
1 1 2 2

.
2

b T

T b T b T

σ ρ− σ
ρ =

σ − σ σ ρ + σ
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Finally, the third term of equation (44) is simply

    
     
     

( ) ( )( )
( )( )( )

( )
2

1

2

3 .
b

b
Q

Q
c S T

S T
E S T

E KI K d 
 

≥ 
 

 

 
 
  = Φ 
 
  

  (48)

Combining those three term, we get the BS-approximation as in equation (11).
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