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ABSTRACT

By employing a randomisation procedure on the variance parameter of the standard geometric Brownian
motion (GBM) model, we construct new families of analytically tractable asset pricing models. In particular,
we develop two explicit families of processes that are respectively referred to as the randomised gamma (G)
and randomised inverse gamma (IG) models, both characterised by a shape and scale parameter. Both models
admit relatively simple closed-form analytical expressions for the transition density and the no-arbitrage
prices of standard European-style options whose Black-Scholes implied volatilities exhibit symmetric smiles
in the log-forward moneyness. Surprisingly, for integer-valued shape parameter and arbitrary positive real
scale parameter, the analytical option pricing formulas involve only elementary functions and are even more
straightforward than the standard (constant volatility) Black-Scholes (GBM) pricing formulas. Moreover, we
show some interesting characteristics of the risk-neutral transition densities of the randomised G and IG
models, both exhibiting fat tails. In fact, the randomised |G density only has finite moments of the order
less than or equal to one. In contrast, the randomised G density has a finite first moment with finite higher
moments depending on the time-to-maturity and its scale parameter. We show how the randomised G and
IG models are efficiently and accurately calibrated to market equity option data, having pronounced implied
volatility smiles across several strikes and maturities. We also calibrate the same option data to the well-
known SABR (Stochastic Alpha Beta Rho) model.

Keywords: static randomisation; pricing European-style options; Black-Scholes implied volatility; calibration;
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OPUTUHANBHAA CTATbA

OueHkKka CTOMMOCTM ONLMOHOB
ANS paHAOMU3UPOBAHHbIX MOAENEMN
reoMeTpuyeckoro 6poyHoBCKOro ABMXKEHUS

Dxy3senne Kamnonuetu, Xupomuuu Kato, PomaH Makapos
YHuepcuteT Yundpuaa Jlopbe, Batepnoo, OHTapuo, KaHaaa

AHHOTALUA
Mcnonb3ys npoueaypy paHLOMMU3aUMKM AMCNEPCUN CTAHAAPTHON MoAenu reometTpuyeckoro bpoyHckoro
nwxkeHus (FBM), aBTopbl NOCTPOMIM HOBble CEMEWCTBA AaHAIMTUYECKMU peLlaeMbiX Moaenei LeHoobpa-
30BaHMs GMHAHCOBbIX aKTMBOB. B yacTHoCTH, Bbinn pa3paboTaHbl ABa CEMENCTBA NPOLECCOB, 3 UMEHHO
mMoaenn — paHgoMmusnmpoBaHHasa ramma (I u paHgoomMusnpoBaHHasa obpaTtHas ramma (Of), koTopble xa-
pakTepu3ylTca napameTpamm Gopmbl M MaclwTaba. Obe Mogenn LONyCcKakT AOBOJIbHO NMPOCTblE aHANMU-
TUYECKME BblIpaXKeHUs AN NNOTHOCTM nepexofa u 6e3apOuTpakHOM LeHbl CTaHLAPTHbIX €BPOMeRCKUX
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onunoHoB. BonatunbHocTb bnaka-Lloynsa nposasnsgetr CUMMETPUUYHYIO «yNblOKY» ANg norapudMmnyecku
dopBapAHON AeHexXHOCTU. [[puMeyaTenbHo, HO NS LenblX 3HaYeHM napamMeTpa GOpMbl U NPOU3BOSb-
HOro MONIOXMTENbHOTO NapamMeTpa MacwTaba aHanuTMyeckme dopmynbl LeHoobpa3oBaHWS BapMAHTOB
BKJ/IKOYAIOT TO/IbKO 3/1EMEHTAPHbIE QYHKLUU U [axe ABASIOTCA Npole CTaHLAPTHbIX (418 NOCTOSIHHOM BO-
natunbHoctn) dopmyn LeHoobpasoBaHus bnaka-Loynsa (Mogenb MB). B cTaTbe AaHbl XapakTepUCTUKU
PUCK-HENTPaNbHOM MJIOTHOCTEN Nepexona ANg paHAOMU3MPOBaHHbIX Mogenen [ n Of, koTopble 4EMOH-
CTPUPYIOT «TSKENble XBOCTbI». PAHAOMU3NMPOBaHHbIE MAOTHOCTM Ans Mogenn O MMeIoT TONbKO KOHEeYHble
MOMEHTbI NMOPSAKA MEHbLUE UK PaBHble OAHOMY, B TO BpeMS Kak paHAOMW3MPOBAHHAN NNOTHOCTb ANS
mMoaenu [ UMeeT KOHEYHbIN MepBblii MOMEHT M KOHEYHble MOMEHTbI Honee BbICOKOrO Nopsaka B 3aBU-
CMMOCTM OT CpOKa MoralleHus onuMoHa 1M napameTtpa MacwTaba. [lokaszaHo, kak PpaHALOMU3UPOBAHHbIE
mopenu I'u OF MoryT 6bITb 3DEKTUBHO M TOYHO OTKANMOPOBAHbLI A1 PbIHOYHbBIX 3HAYEHUIA ONLMOHOB,
LLEMOHCTPUPYIOLWMUX «yNblOKY» BONATUIBHOCTM AN PA3/IMUHbBIX LLEH UCMOJIHEHWUS M CPOKOB MOralleHus.
OTkanubpoBka npoBeaeHa ¢ nomouwbto mogenu SABR (Stochastic Alpha Beta Rho). lpoBeaeHo cpaBHe-
HUe 3TUX Mogenen.

Kntoyesvie cnoea: ctatmyeckas paHLoMm3aums; LeHoobpa3oBaHWe OMLMOHOB €BPOMNENCKOro CTUAS; No4pa-
3ymeBaeMas BonaTunbHOCTb bnaka-Lloyn3a; kannbposka; paHaoMusmpoBaHHble Mogenu GBM; monens SABR

1 Introduction
Mathematicians have developed stochastic
models to value options. The geometric Brown-
ian motion (GBM) model is known as one of the
simplest continuous-time models that admit
analytical closed-form formulas for pricing vari-
ous options (Black & Scholes, 1973). The GBM
model is a complete market model where risks
can be perfectly hedged. A significant limitation
is that there is a discrepancy between antici-
pated Black-Scholes (BS) prices and the market
option prices since the model fails to capture
price movements for extreme events (MacBeth &
Merville, 1979). Local volatility diffusion models
(also known as state-dependent volatility mod-
els) are more flexible continuous-time models
known for describing the behaviour of implied
volatility smile and skew patterns observed in
a marketplace. Local volatility diffusion models
are also complete market models like the GBM
model. In fact, the (one-dimensional) GBM mod-
el is simply a local volatility model with constant
local volatility.

In some cases, nonlinear local volatility mod-
els admit closed-form formulas for pricing vari-
ous options. Families of local volatility diffusion
models that can be analytically solved in closed
form have been developed in several papers, see,
e.g., Albanese, Campolieti, et al. (2001) and Cam-
polieti and Makarov (2012). They are obtained by
applying the “diffusion canonical transformation”
to solvable underlying diffusions such as the Bes-
sel, Cox-Ingersoll-Ross and OrnsteinUhlenbeck
processes. These models have been shown to cali-
brate quite well to equity and FX options. One
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drawback of local volatility diffusion models is the
inherent perfect correlation between the underly-
ing asset price and the volatility. In some cases,
this contradicts the empirical evidence that they
should have an imperfect negative correlation
(Rubinstein, 1985).

The stock market is incomplete in many situ-
ations as traders cannot use options for hedging
all the risks. Stochastic volatility models are in-
complete and assume that volatility is a random
process. We can make the movements of the un-
derlying asset price and the volatility to be nega-
tively correlated. A first example is the Hull and
White stochastic volatility model. Hull and White
(1987) derived the closed-form pricing formulas
for European vanilla options under their model
with zero correlation. They are obtained by aver-
aging the BS prices over the integrated squared
instantaneous volatility process. Theoretical re-
sults of implied volatility under the GBM model
with stochastic volatility are given in Renault &
Touzi’s paper (1996). They have shown that an
implied volatility surface is an even function of
the log-forward moneyness and necessarily pro-
duces a smile effect under the models with zero
correlation. Thus, these models may be used to
calibrate to option price market data.

A second example is the Heston model. Heston
(1993) successfully applied the Fourier transform
method to evaluate European vanilla options with
an arbitrary correlation between the asset price
and the volatility. He also showed that the dis-
tribution of asset returns is asymmetric. Also, he
found that when the marginal distributions of
the asset returns and the volatility are negatively
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skewed. Moreover, the BS out-of-the-money (OTM)
option prices are negatively biased (i.e., BS OTM
option prices are usually smaller when compared
to market prices). BS in-the-money (ITM) option
prices are positively biased.

A third example is the SABR model introduced
by Hagan et al. (2002). The implied volatility curve
captured by the SABR model gives consistency
with the observed marketplace in dynamics. Other
examples are regime-switching models. Bollen
demonstrated that the model with two regimes
could produce pronounced symmetric smiles in
the log-forward moneyness, giving consistency
with the higher BS pricing errors for shorter ma-
turities (Bollen, 1998).

This paper constructs new pricing models with
randomised volatility, where underlying asset
price distributions exhibit fat tails and admit sim-
ple closed-form analytical expressions for stand-
ard European-style option prices. In particular,
we assume that: 1) a unique risk-neutral pricing
measure exists (in advance), 2) the underlying
asset price processes have a finite first moment
but possibly infinite higher moments, 3) there are
no correlations between the asset prices and their
volatility, and 4) the volatility (squared volatil-
ity) coefficient is a random variable with known
probability density function (PDF). The assump-
tions 1) and 2) are based on the Put-Call Parity
methodology in Taleb (2015). This methodology
neglects the strong (but surreal) assumptions
from the dynamic hedging argument and exhibits
better practical phenomena in financial markets.
The assumptions 1)-4) allow for deriving closed-
form expressions (under our new pricing models)
by taking a mathematics expectation under dif-
fusion models over the underlying probability
distribution for the volatility. Our methodology
for computing option prices is closely related to
the Bayesian framework in the GBM model studied
by Darsinos and Satchell (2007). They considered
randomising the volatility where the variance fol-
lows the inverse gamma distribution. They were
successful in deriving analytically closed-form
expressions for the joint PDF of the asset price
and the volatility, as well as the marginal PDF of
the asset price. However, they could not determine
the call pricing formulas analytically, and the
option prices could only be obtained numerically.

This paper is organised as follows. Section 2
proposes a general theory of static randomisation

under the GBM model, including the almost eve-
rywhere (a.e.) existence of transition probability
density functions (PDF) of newly constructed as-
set price processes. We then derive the transition
PDFs of the asset price process with static ran-
domisation of the parameter under two families of
static randomisation, namely the gamma (G) and
the inverse gamma (IG) randomisation. Section
3 states the main results of this paper, including
the closed-form expressions of a European vanilla
call option and the characteristics of shapes of
the implied volatility. In Section 4, we conduct
our numerical experiments pertaining to model
calibrations to market option data. Finally, we
state some concluding remarks with some discus-
sions of future applications.

2 Randomised GBM Models and their
Characteristics

Let (Q,F,P,{F},,) be some fixed filtered (risk-
neutral) probability space where {£} _, is the
natural filtration generated by the P -BM. As-
sume a two-asset economy where the risky asset
price (diffusion) process {S,},., follows a GBM
with stochastic differential equation (SDE):

d;' =rdt +~vdW,; S, >0,

t

where r is the constant risk-free rate, y is a
constant variance and (W}, is a standard
P -BM (i.e., Brownian motion under the risk-
neutral measure with a bank account as numé-
raire). The (risk-neutral) transition PDF for this
process (for a given variance vy) is time-ho-
mogeneous, depending on the time difference

t=T-t:

Pis(S; edy)=P(S,; edy|S, =85)=

1 —(x+lvr)2/2vr
= e 2

y2mvt

, (D
S,y>0,1>0,

dy;

where x=In(y/S)-rt. We now consider ran-
domising the parameter v by introducing the
random variable V to distinguish it from the
parameter v. Then, we can formulate the pric-
ing function for a standard European-style op-
tion with payoff function A by:

V(r,S)=e" jQ Brs[AS,) (@), 1=T-1.2)
v
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Note that ¥, denotes the pricing function for a given choice of the random variable 1 on a sample
space Q,, c R, , where p, is a probability measure for V.! In the case of an absolutely continuous
random variable V we have u,,(dv) =u,,(v)dv with PDF p,,(v). The (marginal) transition PDF for the
asset price process with randomised volatility (the randomised GBM process), denoted by {S},.,
is defined for fixed 1,5 >0 as:2

Pos(Sy edy)=] Pus(S; edym, (@) (3)
v
We can easily show that the transition PDF integrates to one:
J'O P,s(SY edy)= jﬂv ( jo Prs(S, e dy))uv(dv) =1.

By a simple application of Fubini’s theorem, the transition PDF for {S)} ., is well-defined (a.e.)
for every fixed 1, > 0. We can easily show that the discounted randomised process {¢™"S)},., is a

t
P -martingale process *
Eis|S) |=B[Sy|S) =8]=Se".

In what follows, we specify the distribution of Vin two separate ways: as a gamma random vari-
able and as an inverse gamma random variable.

We now look at the transition PDF for the randomised asset price process under the gamma
randomisation (the randomised G process), denoted by {S°®"} ., , where V follows the gamma
distribution with shape parameter gand scale parameter A (i.e., V ~ G(8,))). The PDF of Vis

Mg o (@v) = vole My, B,0>0, Qg =R

+9

A°T(0)

where T'(0)= e 't is the gamma function. We state a useful integral formula (see Prudnikov,
Brychkov, & Marichev, 1986, Eq. 2.3.16.1):

r/2
-"Ovr—le—pv—q/vd‘,:Q(ij Kr(z@); reR, p,q>0, )
p

where K, is the modified Bessel function of the second kind of order v . It gives the analytical ex-

pression for the transition PDF for {S°®"} _ :

~ e *? 2\ aax? O x|v8+At
Pf,s(STG(e’Medy)= ( ] Ko 1/ [x] dy.

yar®)\at) | 8+t 2 I

! One may think that ) is a random variable on (Q, F, I@) where QV is the range of V and M,y is the distribution measure.
2 Note that [P;s (S}} € dy) =p,(7;S,y)dy ,where T=T —t and p(7;8,y) = p(7;8, Y| V) is the transition PDF
(in (1)) of the GBM process for a given volatility parameter value V. Hence,

P..(S; € dy)

dy
{Stv }120 )

3 Recall that the discounted asset price process under the GBM model {e_nSt}rzo is a [P -martingale process. Here an

= pv(T; S,y)= J;z p(: S, y| V),le (dv) s the transition PDF of the randomized asset price process
v

™ % vV _ v
underlying filtered probability space for the randomized process is (Q, -7:, P, {‘7:; },20 ) where f; = O'(Su ,0<su< t) .
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Where x=In(y/S)-rt .Note that for 6=ne N, the transition PDF can be represented by el-
ementary functions. The asymptotic behaviours of the transition PDF at the endpoints are:

Prs(SECY edy) |y (n(1/ )™ as y—0,
dy y—3/2—«/(8+7n:)/47w(lny)e—l as  y—soo.

Based on these asymptotic expressions, we conclude that the o -moment of the randomised G

process:
< /8 +AT .
421

It implies the first moment exists, but the second moment exists iff At <1.Furthermore, we have
an explicit formula for the second moment:

1
a__
2

Ers [(S?‘”’ )2} =5%>"(1-M)"%; for At<l.

Let us now consider the transition PDF for the asset price process under the inverse gamma ran-
domisation (the randomised IG process), denoted by {S/9®} _ . Assume that V follows the inverse
gamma distribution with shape parameter 6 and scale parameter A (i.e., ¥V ~ IG(6,A)). The PDF of
Vis

}LO
WG (dV) = Te)(

1

— Y
y

0+1
j e v, 0,4>0, Qg4, =R

By using the integral identity in (4) we obtain the transition PDF for {S/°®"}_, :

P.s (577N e dy) =

-x/2 0 s 2
e (Mj (x2 +2M) 0/2-1/4 Kgﬂﬂ(ﬁx +2M]dy,

yar@\ 2 2

where x=In(y/S)-rt.The asymptotics of the transition PDF are now as follows:

Pus(S/°®Y edy) [y (In(1/»)*" as y—0,
dy y2(Iny)®' as y e

These two asymptotics give
Er.s [(STG(“))Q} <eo iff 0<a<l.

We can see from Figures 1 and 2 that the GBM has the thinnest tail among the three models for
0=1,2. The left plot in Figure 1 shows that for 6 =1, the randomised G process has a thinner tail
than the randomised IG process for 6 =1. The randomised G process appears to have the thickest
tail among the three when 6 =2, but eventually, the randomised G process tails off faster than the
randomised IG process, as shown at the right plot in Figure 2. It is interesting to see that the PDF of
the randomised G process is uniform for y < Se™ at the right plot in Figure 1. We can also observe
that the PDF of the randomised G process is not differentiable at y = Se’" since K (z)is not differ-
entiable at z=0.
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3 Main Results
The conditional risk-neutral probability that the randomised asset price process is above the strike
K at a time T’ can be written as elementary analytical functions for 6 =ne N .* The reader may re-
fer to Appendix 6 for the details. It helps us obtain analytical pricing formulas for European vanilla
options. We will illustrate it in this section. The price of a European VSanllla call option, denoted by
C,(1,5;K,r), can be written in terms of P,sand P.s.Here IP’; s =P; s is an equivalent martingale
measure with the original asset (e.g., stock) price process {S,},.,as the numéraire. We have

- C,(1,S;K,r) = -
Cy(t,m)= % =Prs(S) > K)—e "Prs(S) > K)> (%)

where ris the current time, 7 is the expiry time, t=7-¢is the time to maturity and
m=In(S / K)+rtis the log-forward moneyness.® For the randomised G process with 8=neN, we
have (call price divided by the spot §):

1/4
Comn(t,m)=(1-e")" + |m|( M ) o2

Jr (8+A1 ©

z: ( 2| m| ij m|\/8+7u:

S\ as+a) 2 U

where (x)" =max{x,0} . For the randomised IG process with g =< N, we have
k
~ 2 27M 1/4 n—ll 7\‘ / 2 2}\/
C[G(n,x)(’c,m)zl—uefmﬂz_' —T K1 N+ SAT (7)
Jn K\ oNm? + 20t 2

We derive general formulas for the main Greeks of a European vanilla call option under randomi-
sation. The general formulas are summarised in Table 1.

It can be shown that the option prices in (6) and (7) retain the symmetry property (see Renault &
Touzi, 1996, Prop. 3.1),

Cy(t,m)=(1—e"™)+e " Cy(t,~m),

and exhibit symmetric smiles in the BS implied volatility. In Figure 3, we can see that for given A >0,
1> 0and log-forward moneyness m , the BS implied volatility is increasing in 6, and deep in- (and

out-) of-the-money option (i.e., large values of m in absolute term) prices are more sensitive to the

parameter 0than near in- (and out-) of-the-money option (i.e., small vale of m in absolute term) pric-
es. In Figure 4, we can see that for given A >0, 1> 0and log-forward moneyness m , the BS implied

volatility is decreasing in 0, and deep in- (and out-) of-the-money option prices are less sensitive to

the parameter 0than near in- (and out-) of-the-money options. Both figures show symmetric smile

effects. We can also see that the BS implied volatility under the gamma randomisation exhibits the

V-shaped (i.e., locally concave) smile. In contrast, the BS implied volatility under the inverse gamma

randomisation displays the U-shaped (i.e., locally convex) smile. We will show in the next section that

the inverse gamma randomisation model calibrates well to some U-shaped market volatility. Hence,
it may be helpful for practitioners to employ this model. However, the gamma randomisation model

does not commonly fit well as we rarely see market volatility with concave smiles in practice.

+For @ ¢ N, we can derive the at-the-money forward (ATMF) option prices in closed-form in terms of the hypergeometric func-
tions. The reader may refer to Appendix 7 for the details.

5 Throughout, we denote m = m(S, K,7) = In(S / K) + r7 to avoid clutter.
12
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4 Numerical Example

In this section, we calibrate our models to some market option data. We extracted the market data
for the Coca-Cola European call options with spot time on April 2, 2019. The market data contains
354 sample data points with 15 distinct values of the maturity time. The market volatility in the
data set exhibits pronounced smiles across different strikes for short times to maturity and skewed
smiles for long times to maturity. We decided to compare the performance of the new models with
the SABR model because the latter admits a closed-form yet simple celebrated formula for approxi-
mate implied volatility. We calibrated the models to the market data among classes consisting of
all observations with the same maturity times because the SABR model calibrates well at a single
maturity but does not calibrate well at multiple maturities (Wu, 2012). The summary of the market
data used here you can found in Table 2. The reader may refer to Tables 3, 4, 5 and Figures 5, 6, 7, 8
for the results.

Suppose that 1", ¥ are the observed market option price and market volatility respectively for
i=1,...,N where N_=#S_ is the number of observations with maturity time t, and 7, K; are the
corresponding maturity time and strike price. Define 7 ={r,:i=1,...,N}as the collection of maturity
times in the data set arranged in increasing order. Let S, ={i|t; =1t T'}be the collection of observa-
tions with maturity time t e 7T . For each t,we use the usual root mean squared error (RMSE) as a loss
function L(6,A) for the model calibration under the gamma and the inverse gamma randomisation:

3 (Va.s:K)-V )
L.(6,1)= % N ; teT,

T

where N, =4#S,is the number of observations with maturity time 1, and t,, K, are the correspond-
ing maturity time and strike price. Alternatively, for the SABR model, we use a formula from Hagan
et al. (2002), denoted by G,z , to find optimal values of parameters that minimise the difference
between the corresponding BS implied volatility and the market volatility in the RMSE sense. Hence,
the loss function for the SABR model calibration is:

Z(GSABR(TiaS,G;Ki)—Z:)Z
Lieup.op)=| = I . 1eT,

T

For the SABR model parameters, we attempted to find optimal values for the parameters
(0,,6,p) = (au(B),o(B),p(B)) across different values of pe[-1,0], and find the optimal value of by
comparing the associated RMSEs.® We found that f =-1gave the lowest RMSE.

Based on Tables 3, 4, and 5, we found that: the inverse gamma randomisation performs better
than the gamma randomisation because the RMSE is smaller for fixed t.Figures 5, 6, 7, and 8 sug-
gest that the inverse gamma randomisation performs quite well for short maturity times, and the
SABR model fits almost perfectly.

5 Conclusion
In this paper, we constructed the randomised GBM processes under the gamma and the inverse
gamma randomisation, namely the randomised G and IG processes. We observed that both processes
had thicker tails than the GBM process, and the randomised IG process had the heaviest tails among
the three. We obtained explicit no-arbitrage pricing formulas for European vanilla call options with

¢ In our data set, we saw that ,3 was not a robust parameter since the optimal value for ﬂ varies with different initial values of
,B . So we used the calibration method in Hagan et al. (2002) to find ﬂ in advance. There are different approaches for the SABR
model calibration, see e.g., West (2005).

13
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integer-valued shape parameter and ATMF op- la. We found that the inverse gamma randomi-
tion prices with real-valued shape parameter. sation fitted well, especially for short maturity
Surprisingly, the pricing formulas presented in  times.

this paper are even simpler than the classical Further applications of the randomised models
GBM model as they are expressed as elementa- will be discussed in other planned future papers.
ry analytical functions. The option prices were = We will provide analytical extensions that take
also obtained numerically in an efficient man- into account imposed killing, leading to closed-
ner. The European-style option prices under the form formulas for specific exotic options under the
new processes exhibit symmetric smiles in the randomised models. We will build a randomisation
log-forward moneyness. We calibrated the ran- framework in a multi-asset economy and examine
domised GBM models and the SABR model to the analytical tractability of other complex deriva-
the actual market option data set from Coca-Co- tives for payoffs, depending on two or more assets.
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Table 1
Greeks of a European vanilla call option under randomisation

Name Notation Formula (Note: m = ll’l%-H”C)
aC 1 m+EVT
% —| erfc| ———=—=— |u,(dv)
Delta Ay = 28 2'[91» Jor [
1 1 —(m-%—lvﬂr)2 /2vt
9’C ~| = T v
Gamma Iy = BS; S'[Qv \2mvt v
1
aC L[ erf SR W
_9% Ste™" —| erfc| ———— |, (dv
Rho Pv="3, 270, Javr [V
L2
Theta L 2 Y9, \2nt T

Source: The authors.

Table 2
Set of parameters and stopping criterion to be used for calibrating to the market data

Variable Description Value
S spot price 46.57
r constant risk-free rate 0%
T 0.008 ~1.792

maturity times (in years)

K strike prices 23~65
L 107°
TolX termination tolerance on the current value
- . 107t
TolFun termination tolerance on the function value

Source: The authors.
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Table 3

Optimal values of © and \ under the gamma randomisation (Note that we can only compare the RMSE with the
inverse gamma randomisation for fixed T, but we cannot compare the RMSE across different values of T because the
sample size differs across maturity times)

T N, 0 A RMSE Time
0.008 33 0.095 0.575 0.041 71.194
0.027 33 0.108 0.334 0.059 91.963
0.044 35 0.176 0.171 0.070 8.189
0.066 19 0.405 0.104 0.083 1.932
0.085 15 0.214 0.215 0.159 3.123
0.104 15 0.087 0.720 0.295 40.699
0.123 24 0.193 0.228 0.121 5.902
0.219 32 0.153 0.276 0.162 15.721
0.373 31 0.369 0.089 0.169 4.230
0.468 29 0.322 0.105 0.173 5.593
0.622 24 0.482 0.067 0.175 3.156
0.795 17 2.669 0.009 0.184 1.989
1.216 16 3.245 0.007 0.186 1.837
1.466 14 2.070 0.012 0.227 2.087
1.792 17 11.021 0.002 0.173 2.154

Source: The authors.
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Table 4

Optimal values of © and A under the inverse gamma randomisation (Note that we can only compare the RMSE with
the gamma randomisation for fixed T, but we cannot compare the RMSE across different values of T because the
sample size differs across maturity times)

T N, 0 A RMSE Time
0.008 33 0.719 0.002 0.032 6.087
0.027 33 0.827 0.002 0.051 3.460
0.044 35 0.877 0.003 0.062 3.569
0.066 19 1.227 0.014 0.079 2.332
0.085 15 0.885 0.005 0.147 2.107
0.104 15 0.672 0.002 0.280 2.533
0.123 24 0.923 0.006 0.106 2.788
0.219 32 0.799 0.003 0.135 3.897
0.373 31 0.979 0.006 0.147 2.903
0.468 29 0.926 0.005 0.141 3.787
0.622 24 1.091 0.009 0.153 3.789
0.795 17 2.406 0.035 0.181 2.338
1.216 16 2.962 0.048 0.183 2.697
1.466 14 1.861 0.024 0.217 2.310
1.792 17 8.016 0.155 0.173 3.485

Source: The authors.
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Table 5
Optimal values of O, G and P under the SABR model (Note that we do not display the RMSEs here because the units
associated from the SABR model is different from the randomised GBM models)

T N, o o 0 Time
0.008 33 21.729 2.994 —-0.502 0.435
0.027 33 10.616 3.643 —0.560 0.574
0.044 35 7.711 4.204 -0.619 0.353
0.066 19 4.691 6.793 —0.465 0.329
0.085 15 5.040 6.239 -0.610 0.341
0.104 15 5.967 5.473 —-0.704 0.344
0.123 24 3.633 6.119 -0.570 0.337
0.219 32 2.916 5.424 —0.604 0.360
0.373 31 1.895 5.701 —-0.535 0.159
0.468 29 1.631 5.680 —0.385 0.392
0.622 24 1.147 6.256 —0.341 0.378
0.795 17 1.001 6.032 —-0.425 0.359
1.216 16 0.673 6.272 —0.242 0.371
1.466 14 0.782 5.940 -0.154 0.303
1.792 17 0.467 6.371 -0.058 0.331

Source: The authors.
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Appendix
A.1 Proof of the Exact Pricing Formula with Integer-valued Shape Parameter
Let us take A(S;)=1, 5> xywith K >0, where 1, is the indicator function of some event A .By (2) we

have the following risk-neutral condltlonal probability that the asset price is above the strike K at
the time 7 :

) m—Evr _m—lvr
P, s(S; > K)= /\/ u,,(dv)= erfc

2 |u,
\/V_ o, \/m Hv( V),

where ¢rfc is the complementary error function. We state another useful integral formula (see

Prudnikov, Brychkov, & Marichev, 1986, Eq. 2.8.9.7):!

B | Th1(c2 + p)V/* nok 2 K2
J x”e"’xerfc(m/;+i}dx=—2(ﬁ)l {1{b<0}+—| e +p) ) Y zb
0 Jx Jn “ R\ +p

X[sgn(b)K, _ 1/2(2|b|\/c +p)- \/7 k+1/z(2|b|\/C +p)l},

8)

where sgn is the sign function with sgn(0)=1. We can use (8) to obtain analytical formulas for the
randomised processes in the case with integer-valued 6 = e N . For the randomised G process, we
have:

N dml (a8 1( 2lm| ‘
P, (S > gy=1 _M( ) em?
1,5 (87 )= Loy r \ a Zkl NNy

)
|m| N8+t /Y |m| N8+t
X Sgl’l(m)Kk 1/2 Kk+l/2
2 I ) B PNV
For the randomised IG process, upon changing the integration variable, we have:
~ (m* + ZM)I/ 4 1 ‘
Prs(SFCM > Ky ="+—"=7 2—[ J
2\/E k=0 K! 2\m +27\,‘C (10)

X

X m? + 2\t m__ m? + 2\
k=172 ) + m k+1/2 —2 .

. . . e () . .
Now, we consider the risk-neutral conditional probability P =P "under an equivalent martingale
measure with the asset price process {S,},5;as the numéraire, where

1
Syl /B, m+—vt
~ ~ (SY>K)} 1 2
Pis(SY>K)=E,s| ——L——— |=—| erfc| ——==— |u,(av). (11)
T t S’ /B, 2".91) V2t H

! The integral formula is valid for R(p) > 0,|arg(c) |< % . Moreover, it would be valid for 9{(02 + p)>0if R(c)>0.
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where B =¢"” is the bank account value at the time 7. For the randomised G process
(§¢=My .neN,by using (11) and (8), we have:

~ s+ \t L2 2lm )
P SG(n,)») >K)=1 _M( ) efm/2 Il Dl Rl
t,S( T ) {m>0} 2\/; i \/H (—8+7»T
im|B+at) | m| B+ AT (12)
x| sgn(mK, _,»| — - Ky s |l

2 Um 8+t 2 I

By substituting (9) and (12) into (5), we obtain (6). For the randomised IG process {S/°""} _
ne N, by using (11) and (8) we have:

N =R\ odm? + 20

% m? + 2\t m_ m? + 2\t
k-1/2 D) _m k+1/2 ) .

P (m*+2A1)4 = AT k
Pis (S;G(”’M >K)y=1--—"2 g2 [—J

13)

By substituting (10) and (13) into (5), we obtain (7).
A.2 The Exact Pricing Formulas for ATMF Options

The price of an ATMF (i.e., m=1In(S / K)+rt=0) European vanilla call option under the GBM model,
with variance randomised according to the probability measure p,, , can be expressed as:

Crvz0) = erf[%j w, (dv).
1%

Where erf is the error function. We use the above equation to derive the pricing formulas for ATMF
options explicitly under the gamma and inverse gamma randomisation for shape parameter 9 R, .

Proposition 1 The price (divided by spot S ) of an ATMF European vanilla call option under the
gamma randomisation is:

R r(e+;) g ¢ | g
C 0)=1-—2 [ 2| F(0,0+=:0+1,——),
o) (T,0) '_fcl“(6+1)(7ﬂ) Fi( 5 M)

where | F, (a;bh;z) is the generalised hypergeometric function.

Proof

We first make a note that the incomplete gamma function can be expressed in terms of the Kummer
function of the first kind.i.e.,

1(0,x)=0"'x* |F(6;0+1;-x).
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Hence, we have

0
-~ 1 8 il 8y 0-1/2 -
C .,0)=1-—| — F|6,0+1;—— Ydy.
G(e,l)( ) \/EF(6+1)(7UC) J‘O 1 1( thy e y

And an integral representation of a generalised hyperbolic function is:?
Gys...,a, 1 = a0y a,...,a,
F 2= s0 e F ;28 |ds.
el "(bl,...,bq ] F(ao)-[o ? "{bl,...,b ]

From the integral representation above, we obtain the final expression.
Proposition 2 The price (divided by spot § ) of an ATMF European vanilla call option under the in-
verse gamma randomisation is:

( j 133 At
c 0 S22 M
166)(%,0) = \/ o T1(0) 12(2’2’2 ’8)
. r( ej
+(Ej _\2 F (e 0+1,0+4: M).
8 2

Jar@+1) )
Proof
We first make a note of an integral representation of the Kummer function of the first kind
1
1F1(a,b,c)= l—‘(b) J cu a 1(1 u)baldu
T'(@I'(b—a)’o

Hence, we have

~ 7 A\ -
CIG(e,)\)(T,O)=m(%) J‘Oue/z 3/4Ke_1/2 % i

Now use the fact that modified Bessel functions of the second kind can be expressed in terms of
generalised hypergeometric functions.i.e.,

-0 2 2
Ke<x>=@[§] FG-0+1 )+ “29)(2) F0+15).

Another integral representation of a generalised hyperbolic function is:3

dy,...,d 1, _ —a— a,...,a
p+qu+l ’ P;z ZLJSO 1(1_S)b0 ot qu 1 p;ZS ds.
bys-.sb, T(a, )T (b, —ay) 70 b,....b

From the integral representation above, we obtain the final expression.

2 The integral formula is valid for R(z) <1,R(a,) > 0.
5 The integral formula is valid for R(b,) > R(a,) > 0.
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