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ABSTRACT
Over the past decades, financial markets have increasingly exhibited features of both randomness and 
uncertainty, creating challenges for interest rate models that rely solely on stochastic or uncertain processes. 
These models often fail to adequately capture the dual nature of indeterminacy, limiting their relevance in 
volatile and unpredictable market conditions. This study aims to design and assess an interest rate model 
for uncertain-stochastic financial markets and to derive a framework for zero-coupon bond pricing under 
this setting. The methodology applies uncertain stochastic differential equations, which integrate elements 
of both probability theory and uncertainty theory, thereby accommodating aleatory and epistemic forms of 
indeterminacy. The proposed model extends the classical short-rate frameworks by introducing two sources 
of indeterminacy and provides theoretical derivations for bond pricing. Numerical illustrations are included 
to demonstrate the application of the model to zero-coupon bond valuation and to highlight differences from 
conventional approaches. The findings indicate that interest rates and zero-coupon bond prices in uncertain 
stochastic financial markets can be effectively modeled through uncertain random processes, leading to 
improved pricing accuracy and risk management in environments characterised by incomplete information 
and unpredictable shocks. The key conclusion is that incorporating uncertain stochastic differential equations 
into the interest rate and zero-coupon bonds’ prices modelling offers a more robust and flexible framework 
for uncertain stochastic markets. This study contributes to the growing body of uncertain stochastic finance by 
underscoring the need for hybrid models capable of guiding policymakers, investors and financial institutions 
in ensuring stability and resilience under future market uncertainties.
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АННОТАЦИЯ
За последние десятилетия финансовые рынки все чаще демонстрируют черты как случайности, так и не-
определенности, что создает трудности для моделей процентных ставок, основанных исключительно на 
стохастических или неопределенных процессах. Эти модели часто неадекватно отражают двойственную 
природу неопределенности, что ограничивает их применимость в волатильных и непредсказуемых ры-
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Introduction
Financial decisions, in practice, are executed under 
the condition of indeterminacy. Uncertainty and 
randomness are two common kinds of indetermi-
nacy [1, 2]. Probability theory, introduced by [3], 
deals with randomness and uncertainty theory, de-
veloped by [4] and enhanced by [5], models human 
subjective uncertainty. Matenda and Chikodza pos-
tulated that the probability theory is implemented 
when the sample size is large to generate the prob-
ability distribution from the existing frequency [6]. 
On the contrary, if the size of the sample is nonex-
istent or too small to generate the probability dis-
tribution, the theory of uncertainty is implemented 
[6]. In this case, domain specialists are requested 
to assess their belief degrees of each event occur-
ring [7–9]. Implementing probability theory in this 
situation results in counterintuitive results. Using 
uncertainty theory ensures that no counterintui-
tive results arise [10].

Stochastic processes, random variables and sto-
chastic differential equations (SDEs) are essential in 
probability theory because they are implemented to 
deal with random phenomena that change with time 
[11, 12]. The Brownian motion is one of the broadly 
implemented stochastic processes in practice [13, 14]. 
SDEs are powered by stochastic processes. Applying 

probability theory in the finance discipline resulted 
in the birth of the theory of stochastic finance. Hence, 
stochastic processes and SDEs are essential tools in 
stochastic financial markets. Since the publication of 
the classical work of [15], SDEs have been extensively 
implemented in finance theory. The work [15] pro-
pounded that the price of a stock can be explained by 
an exponential Brownian motion and then designed 
option pricing formulae for the European options.

One of the most important mathematical frame-
works in finance is the short-rate interest model, which 
describes the progression of interest rates (IRs) over 
time. This framework focuses on the short-term inter-
est rate (IR), which we can simply call the short rate. 
It is applicable for the shortest period and is often 
interpreted as an instantaneous rate. Short-rate inter-
est models have been widely used in the IR derivatives 
pricing, bond valuation and risk management. Tradi-
tional short rate models make use of SDEs to elucidate 
short-term IR progression. Quite a number of models 
incorporate mean reversion, which is the tendency of 
IRs moving towards, over time, a long-run average. 
These short rate models are usually developed in the 
context of the risk-neutral measure framework.

In 1973, [16] explained the IR by implementing 
stochastic processes to establish the zero-coupon 
bond price. The most common stochastic short rate 

ночных условиях. Целью данного исследования является разработка и оценка модели процентной ставки 
для неопределенно-стохастических финансовых рынков и разработка модели ценообразования обли-
гаций с нулевым купоном в этих условиях. Методология использует неопределенные стохастические 
дифференциальные уравнения, которые объединяют элементы как теории вероятностей, так и теории 
неопределенности, тем самым учитывая алеаторные и эпистемические формы неопределенности. Пред-
лагаемая модель расширяет классические модели краткосрочных ставок, вводя два источника неопреде-
ленности и предоставляя теоретические выводы для определения цены облигаций. Приведены числовые 
иллюстрации для демонстрации применения модели к оценке облигаций с нулевым купоном и для выяв-
ления отличий от традиционных подходов. Результаты исследования показывают, что процентные ставки 
и цены облигаций с нулевым купоном на неопределенных стохастических финансовых рынках могут быть 
эффективно смоделированы с помощью неопределенных случайных процессов, что приводит к повы-
шению точности ценообразования и управлению рисками в условиях неполной информации и непред-
сказуемых шоков. Ключевой вывод заключается в том, что включение неопределенных стохастических 
дифференциальных уравнений в моделирование процентных ставок и цен облигаций с нулевым купоном 
обеспечивает более надежную и гибкую структуру для неопределенных стохастических рынков. Данное 
исследование вносит вклад в растущий объем знаний неопределенных стохастических финансов, под-
черкивая необходимость гибридных моделей, способных помочь политикам, инвесторам и финансовым 
учреждениям обеспечить стабильность и устойчивость в условиях будущей рыночной неопределенности.
Ключевые слова: неопределенность; случайность; неточность; модель процентной ставки; ценообразова-
ние облигаций с нулевым купоном; теория вероятностей; теория неопределенности; теория случайности; 
неопределенные стохастические финансовые рынки; неопределенные случайные процессы; неопреде-
ленные стохастические дифференциальные уравнения
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models have been developed by [7–10] and references 
thereof. A general form of the IRs term structure 
was examined by [17]. The author suggested a novel 
mean-reverting IR model powered by a Wiener pro-
cess. In 1986, [18] developed [16]’s IR model, assum-
ing a no-arbitrage principle. For more expositions on 
the implementation of SDEs in IR modelling, see, for 
instance, [19, 20]. Fundamentally, stochastic financial 
models are premised on the supposition that asset 
prices are only subject to random movements [21, 22].

Some short-rate models are computationally ef-
ficient, practical for real-world applications, incor-
porate mean reversion, are consistent with observed 
market prices, and are used in a wide range of ap-
plications that are easy to understand and apply. 
However, some of them allow for negative IRs, as-
sume a single source of uncertainty, have calibration 
challenges, are unable to fit the entire yield curve, 
are over-simplified, assume constant volatility, are 
difficult when pricing complex derivatives and are 
computationally expensive.

In uncertainty theory, uncertain processes, uncer-
tain variables, and uncertain differential equations 
(UDEs) are essential because they explain dynamic 
uncertain systems [23, 24]. The Liu process [5] is a 
commonly implemented uncertain process. UDEs 
are driven by uncertain processes. The application 
of uncertainty theory in the discipline of finance 
resulted in the emergence of the theory of uncertain 
finance. As a result, uncertain processes and UDEs 
are essential tools in stochastic financial markets. 
UDEs were first applied in financial models by [5]. [5] 
postulated that the price of a stock could be explained 
by an exponential Liu process. The author [5] further 
priced the European options for stocks premised 
on an uncertain stock model. Since the publication 
of the classical work of [5], UDEs have been widely 
adopted in finance theory (see, for instance, [25–27]).

UDEs have been broadly implemented to model 
rates of interest in uncertain financial markets [28–
30]. In an uncertain environment, [31] presumed 
that the rate of interest is an uncertain process and 
applied UDEs to describe the IR and priced, in ana-
lytic form, a zero-coupon bond. [31] designed the 
initial uncertain IR model for uncertain markets, 
even though the rate of interest may be negative in 
this model. [32] developed the pricing formulae for 
IR floors and ceilings. Implementing an uncertain 
fractional differential equation, [33] designed an 
IR model. [34] generated an IR model using an un-
certain exponential Ornstein-Uhlenbeck equation. 

Some authors, specifically [35, 36], demonstrated 
that UDEs could model IRs.

Most studies have modelled indeterminacy by 
independently using randomness or uncertainty. 
However, [37–40] revealed that uncertainty and ran-
domness could concurrently materialize in a process. 
Similarly, [21] indicated that, in reality, financial mar-
kets frequently comprise human uncertain factors 
and stochastic factors. Randomness is the aleatory 
uncertainty, while Liu’s uncertainty is the epistemic 
type. Recent developments in various fields have 
shown that it is essential to include both random-
ness and uncertainty when modelling indeterminacy. 
Hence, studies on indeterminacy have led to novel 
discoveries on how to describe processes with both 
uncertainty and randomness. [37] introduced the 
chance theory to deal with both randomness and 
uncertainty in sophisticated mathematical systems. 
Interestingly, [6] propounded that probability theory 
and uncertainty theory supplement one another.

A chance measure, a chance space, a chance distri-
bution, an uncertain random variable, expected value, 
and variance were introduced by [37]. In 2015, [41] 
presented an uncertain random process to describe 
the uncertain random phenomena dynamics that 
change with time. Uncertain stochastic differential 
equations and uncertain random processes are central 
to the discipline of uncertain random calculus because 
they describe the evolution of different processes with 
randomness and uncertainty. The USDE is powered 
by a canonical Liu process and a Brownian motion 
[42]. USDEs are driven by US processes. The adoption 
of chance theory in the discipline of finance resulted 
in the establishment of the US finance theory. Hence, 
uncertain stochastic (US) processes and USDEs are 
imperative tools in US financial markets.

B. Liu [43] examined several aspects of uncer-
tain random variables, which include problems in 
mathematical programming, risk analysis, reliability 
analysis, graph theory, network problems, to mention 
but a few. For US financial markets, [6] developed a 
stock model with jumps. This model was later ap-
plied in solving a US option pricing problem in the 
existence of uncertain jumps by [44]. Recently, [45] 
proposed a US optimal control model with a jump and 
applied it to portfolio game symmetry. [46] tackled a 
multi-objective optimization problem in uncertain 
random environments. [47] applied US systems with 
Markovian switching in solving a portfolio selection 
problem. Interestingly, until now, no study has de-
signed an IR model for US financial markets.

An Interest Rate Model for Uncertain-Stochastic Financial Markets
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In this study, we suggest that the short rates of interest are driven by USDEs in the US financial markets. 
In this framework, the presumption is that the IR is driven by two sources of uncertainty. Employing an 
uncertain differential equation, we design a US IR model and then implement that model to price a zero-
coupon bond. For effective and efficiency purposes, numerical examples concerning zero-coupon bond 
pricing are presented.

The rest of the article is arranged as follows: Section 2 covers the preliminaries, and Section 3 examines 
a US short-rate model. Numerical examples are outlined in Section 4. Conclusions are given in Section 5.

Preliminaries
This section outlines crucial definitions concerning uncertainty theory, probability theory and chance 

theory. We presume a complete filtered uncertainty probability space ( )�� �� ,�� �� � ,�� � � �PΓ × Ω × ×    character-
ised by a filtration ( ) [ ]0,t t T

×


  , created by a standard a one-dimensional Brownian motion, [ ]0,{ }t t TW  , 
and a one-dimensional Liu process, [ ]0,{C }T T . Basically, �� �� �Γ × Ω  represents the universal set, ×   is a 
product σ-algebra, P×   signifies a product measure and ( )�� �� ,� �� �� ,� � �PΓ × Ω × ×    denotes an uncer-
tainty probability space.

Definition 1 Presume Ω  denotes a non-empty set and   represents a σ-algebra over �Ω . Every com-
ponent A in   is an event. A probability measure refers to a set function [ ]: 0,1�P →  which fulfills the 
below-stated axioms:

•  Normality: { } 1P Ω =  for the universal set Ω
•  Non-negativity: { }� 0P A ≥  for every event A ;
•  Additivity: For each countable series of mutually disjoint events

{ }1 2 3
1 1

�� , , ,...,�� .i i
i i

A A A P A P A
∞ ∞

= =

   = 
 

∑

Definition 2 A random variable refers to a function ԑ from a probability space ( ), ,PΩ   to a set of real 
numbers in a manner that for each Borel set �B of real numbers, { }� � �Bε∈ is regarded as an event.

Definition 3 Presume ( ), ,PΩ   denotes a probability space, and T  is an index set. A stochastic process 
refers to a measurable function ( )TX ω  from ( )� � , ,T P× Ω   to the set of real numbers in a manner that at 
any time t, for every Borel set of real numbers { }�,�� tX B∈  is an event. Basically, a stochastic process refers 
to a series of random variables indexed by space or time.

Definition 4 A stochastic process �tW is regarded as a standard Brownian motion if
•  0 0W = , and almost all sample paths are continuous,
•  Wt is associated with independent and stationary increments,
•  each increment s t sW W+ −  is a normal random variable with variance t and an expected value 0.
Definition 5 [4] Presumed that Г  denotes a non-empty set, and   represents a σ-algebra over Г . Each 

component ∧  in   is regarded as an event. Basically, an uncertain measure refers to a set function 
[ ]: 0,1→   which fulfills the below-stated axioms:

•  Normality: { }Г 1;=
•  Monotonicity: { } { }1 2∧ ≤ ∧   if 1 2� ;∧ ⊂ ∧
•  Duality: { } { }1 1c∧ + ∧ =   for each � � ;∧∈
•  Sub-additivity: For each countable event series { } } {{ }1 2, ,... , i ii i

∧ ∧ ∧ ≤ ∧∑

  .

Definition 6 [4] An uncertain variable refers to a measurable function ε  from an uncertainty space 
( ,�� ,�Г   ) to the set of real numbers in a manner that for every Borel set B , { }�Bε ∈  is regarded as an 
event.

Definition 7 [37] Presume that T  is regarded as an index set, and ( ,�� ,�Г   ) denotes an uncertainty 
space. Conceptually, an uncertain process refers to a measurable function tX (γ) from ( )� � , ,T × Γ    to the 
set of real numbers in a manner that at any time t , for each Borel set { },�� � �tB X B∈  is regarded as an event.

Definition 8 [5] An uncertain process tC  is a Liu process if
•  0 0C = , and almost all sample paths are Lipschitz continuous,
•  tC  is associated with independent and stationary increments,
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•  each increment s t sC C+ −  is regarded as a normal uncertain variable characterised by variance 2t and 
expected value 0, whose uncertainty distribution is described by

( )
1

1 exp , � �
3

x
x x

t

−
  πΦ = + − ∈    

 .

Definition 9 [37] Assume that ( ) ( ),� ,� ,� , �PΓ × Ω   denotes a chance space, and � � �� ��Θ∈ ×   represents 
an uncertain random event. Hence, a chance measure { }Ch Θ  is given by

{ } ( )1

0
{ � � | { � � | , � � } } .Ch P r drΘ = ω ∫ Ω γ ∈Γ γ ω ∈Θ ≥∫ 

A chance measure fulfills the following axioms:
•  Normality: (Liu, 2013) ( )� 1,Ch Γ × Ω = { }�Ch 0;∅ =
•  Monotonicity: (Liu, 2013) { } { }1 2Ch ChΘ ≤ Θ  for each event 1 2Θ ≤ Θ ;
•  Self-duality: (Liu, 2013) { } { } 1cCh ChΘ + Θ =  for each event Θ ;
•  Sub-additivity: (Hou, 2014) For each countable series of events { }1 2,� ...,� � ;i i

i i

Ch Ch
∞ ∞


Θ Θ Θ = Θ


∑

•  Null-additivity: (Hou, 2014) Assume that 1 2,� ,�Θ Θ …  denotes a series of events with { } 0iCh Θ →  
as .i → ∞  So, for each event

{ } { }lim lim .i
i i

i

Ch Ch Ch
→∞ →∞

 ΘΘ Θ = = Θ Θ  


This implies that { } { } { }1 2 1 2Ch Ch ChΘ Θ = Θ + Θ

 if either { }1 0Ch Θ =  or { }2 0;Ch Θ =
•  Axiom 6: Asymptotic (Hou 2014) For each series of events 1 2� , , ,Θ Θ …

lim �{ } 0, � � ,��lim �{ } 1, � .i i i i
i i

Ch if Ch if
→∞ →∞

Θ > Θ ↑ Γ ×Ω Θ < Θ ↓ ∅

Definition 10 [37] An uncertain random variable refers to a measurable function ξ  from a chance space 
{ } { }, , , ,Г P× Ω    to the real numbers’ set in a manner that for any Borel set B  of real numbers, the set 
{ } ( ) ( )� { , | , � }B Bξ∈ = γ ω ξ γ ω ∈  is regarded as an uncertain random event in .× 

Definition 11 [42] (i) An uncertain random variable refers to a measurable function ξ  from an uncer-
tainty probability space ( )�� �� ,� �� � ,� � � �PΓ × Ω × ×    to the real numbers’ set in a manner that for each Borel 
set B  of real numbers, the set

{ } ( ) ( )� � { , � � � � | , }� � �� �B Bξ∈ = γ ω ∈Γ ×Ω ξ γ ω ∈ ∈ × 

is regarded as an event.
(ii) The expected value of an uncertain random variable ξ  is described by

[ ] [ ]pE E E ξ = ξ 

given that the operations on the right-hand are described well. The operators

E �and�E ��p

represent the expected values in the context of the probability space and uncertainty space, respectively.
Suppose b and a are constants, 0t tE aC bW+ =   , where tW  is a standard one-dimensional Brownian 

motion and � �tC is a Liu process. Interestingly, the uncertain random variable definitions introduced by [37] 
and [42] are not similar. The definition propounded by [37] indicates that an uncertain random variable is 
generally a function from a probability space to a set of uncertain variables [42].

Definition 12 [41] Assume that T  is a completely ordered set and ( )�� �� ,� �� �� ,� � � �Г P× Ω × ×    refers to a 
chance space. Conceptually, an uncertain random process refers to a measurable function ( ),tX γ ω  from 

{ }� � � � ,� � � , � �T P× Γ ×Ω × ×    to the set of real numbers in a manner that the set

An Interest Rate Model for Uncertain-Stochastic Financial Markets
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{ } ( ) ( )� � { , � � � � | , � }�t tX B X B∈ = γ ω ∈Γ ×Ω γ ω ∈

is regarded as an uncertain random event in ×   for every Borel set B  of real numbers at any time 
� �t T . Basically, an uncertain random process refers to a series of uncertain random variables indexed by 

time or space, [ )� � 0, � �t ∈ ∞ and is described on a chance space { }� � ,� � , � �PΓ ×Ω × ×   .

Uncertain stochastic short-rate model
This study assumes that the IR can be explained by an USDE. Hence, a US IR model to explain the dynam-
ics of the IR is examined under this framework. An US IR model in US markets can be explained by a USDE

( ) ( ) ( )1 2, , , ,t t t t t tdr e t r dt t r dW t r dC= + σ + σ

where the short IR at time t is given by r, and the drift e, stochastic diffusion 1σ  and uncertain diffusion
2�σ  are presumed to be functions of t and r. This model is an expansion of the model suggested by [6] in 

1973. It is a sole factor short-term IR model that represents the evolution of the IR tr  in the presence of 
epistemic and aleatory uncertainty. The model lacks mean reversion, the IR is an uncertain random vari-
able, and the model has two sources of uncertainty, that is, epistemic and aleatory uncertainty. Aleatory 
uncertainty is premised on the random experiment outcomes’ unpredictability, while epistemic uncer-
tainty is powered by the deficiency of adequate or precise knowledge about facts. In the following section, 
the model is going to be used in zero-coupon bond pricing.

Pricing a zero-coupon bond using an uncertain stochastic short rate model
[48] indicated that if ( ),�P t T  is the price of the zero-coupon bond associated with a maturity date T, then 
if today is time t, the maturity time can be defined as T tτ = − . Also, [31] propounded that the τ-period 
spot IR at time t is described by ( ),�s t T . In addition, [48] indicated that the τ-period spot rate of interest 
at time t satisfies the equations

( ) ( )( )( ), exp ,P t T s t T T t= − − ,

and

                                                                    
( ) ( )

( )
ln ,

,
P t T

s t T
T t

= −
−

. � (1)

Further, [48] propounded that, suppose ( )f ,�t T  denotes a forward IR deduced from the zero-coupon 
bond, then

( ) ( ), exp f ,� d
T

t
P t T t T s = −  ∫ ,

and

                                                                   ( )
( )

( )

,�

f ,�
,�

P t T

Tt T
P t T

∂
∂= −

. � (2)

If the short IR is presumed to follow a USDE, the zero-coupon bond price ( ),�P t T  is the anticipated 
value of one dollar discounted by the probable short rate process’s paths. [48] indicated that the local 
equilibrium hypothesis is that the expected immediate return is given by the short rate of the form

( )
( ) ( ),

exp , �as� 0.
,� t

E P t t T
r t t

P t T

 + ∆  = ∆ ∆ →

From the local equilibrium hypothesis, the zero-coupon bond price ( ),�P t T  is described by

                                                        
( ), exp d

T

v
t

P t T E r v
  = −    ∫ .�  (3)
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The savings account is represented by

( ) ( )
0

exp
t

t r s ds β =   ∫ .

Theorem 1: Suppose a short rate is described by an USDE of the form

                                                             1 2 ,t t t tdr e dt dW dC= + σ + σ  � (4)

where �te is a function of t and 1 2� �andσ σ  denote the constants, then the price of the zero-coupon bond 
associated with a maturity date T is given by

                             ( ) 2 2
2 0 1 1

0 0

1 1
0, 3 exp csc 3 .

2 2

t s

tP T T r T e dtds T T
  = σ − − σ ρ σ      ∫ ∫ �

 (5)

Proof: Equation 4 is an extension of Merton’s model, whose solution, tr , is of the form

0 1 2
0

.
t

t s t tr r e ds W C= + + σ + σ∫

The expected value of  tr  is

0 1 2 0
0 0

t t

t s t t sE r E r e ds W C r e ds = + + σ + σ = +     ∫ ∫
and its variance is described by

2 2 2
0 1 2 1 2

0
.

t

t s t tVar r Var r e ds W C t t = + + σ + σ = σ + σ     ∫
From equation 3, for 0,t =

( )
0 0 0

0, exp d exp [ d ] d
T T

s sP T E r s r s x x
∞    = − = ≤ −        ∫ ∫ ∫  =

= exp[ 0 1 2
0 0 0

[
t s

t t tr T e dtds TW TC x
∞

+ + σ + σ ≤ −∫ ∫ ∫ ]dx] = 

= exp[ [ [ ] ]0 1
0 0

0
2

� �
]

T s

t t

t

x r T e dtds TW
C dx

T

∞ − − − −σ
≤ =

σ
∫ ∫∫   

1

0 1
0 0

20
2

�������������� exp 1 exp .
3

T s

t tx r T e dtds TW
dx

T

−

∞

       π − − − − σ      = + −    σ           

∫ ∫
∫

Replacing tW  with its realizations ρ , we have

( )

1

0 1
0 0

20
2

� �
0, 1 exp

3

T s

tx r T e dtds T
P T dx

T

−

∞

       π − − − −σ ρ      = + − =    σ           

∫ ∫
∫

                                  

2 2
2 0 1 2

0 0

1 1
� 3 exp csc 3

2 2

T s

tT r T e dtds T T
  = σ − − − σ ρ σ      ∫ ∫  � (6)
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Thus, the proof is concluded since equation 6 equals equation 5 which is the price of the zero-coupon 
bond. Replacing te  in equation 6 with a constant e gives

                             
( ) 2 2 2

2 0 1 2

1 1 1
0, 3 exp csc 3

2 2 2
P T T r T eT T T

   = σ − − − σ ρ σ      
. � (7)

Applying equations 1 and 2 to equation 7, the forward IR is given by

  
                                                                ( ) ( )ln� 0,

0,
P T

S T
T

= − =

                       22
22

0 1

11 ln csc 3ln 3
212

�������������� ,
2

TT

eT r
T T

    σσ         
= − + + + σ ρ−

� (8)
                                                                    

                                                             
                   
and the spot IR is described by

( )
( )

( )

0,

f 0,
0,

P T

TT
P T

∂
∂= − =

                                                 

2
0 1 2 2

2 1
�������������� 3 �csc 3

2
eT r T T

T
 = − + + + σ ρ+ σ σ   . � (9)

 
Uncertain stochastic mean reverting short rate model

In this section, an US mean reverting short rate model is proposed. Consider a linear USDE.
Theorem 2: Let 1 2 1 2 1 2, , , , ,t t t t t ta a b b c c be integrable uncertain random processes. The linear USDE

                                          ( ) ( ) ( )1 2 1 2 1 2d d d dt t t t t t t t t t t tX a X a t b X b W c X c C= + + + + +  � (10)

has solution

                                              

2 2 2
0

0 0 0
d d d

t t t
s s

t t s s
s s s

a b c s
X U X s W C

U U U

 
= + + +  ∫ ∫ ∫  � (11)

where

                                                    
1 1 1

0 0 0
exp d d d

t t t

t s s s s sU a s b W c C = + +  ∫ ∫ ∫ .

Proof: Let � tV  and �tU be two US processes such that

1 1 1 ,t t t t t t t t tdU a U dt b U dW c U dC= + +

2 2 2d d d dt t t
t t t

t t t

a b c
V t W C

U U U
= + + .

From integration by parts,

( ) ( )1 2�d d d dt t t t t t t t t tU V V U U V a U V a t= + = + ( ) ( )1 2 1 2���������������������������� d dt t t t t t t t t tb U V b W c U V c C+ + + + .

An uncertain random process in equation 11 given by t t tX U V=  is a solution to equation 10 where

1 1 1
0 0 0

exp d d
t t t

t o s s s s sU U a s b dW c C = + +  ∫ ∫ ∫
and

                                               

2 2 2
0

0 0 0

t t t
s s s

t s s
s s s

a b c
V V ds dW dC

U U U
= + + +∫ ∫ ∫ .

If
0 0 0�� �and� 1V X U= = ,

theorem 2’s solution is obtained; thus, the proof is concluded.
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An US mean reverting IR model in US markets can be described by an USDE

( ) 1 2t t t tdr m er dt W C= − + σ + σ ,

where 1 2, , and�m e σ σ  are constants. This model is an expansion of the model suggested by [7] in 1977. It 
is a sole factor short term IR model that represents the evolution of the IR tr  in the presence of aleatory 
and epistemic uncertainty. The model incorporates mean reversion to the dynamics of the IR process, 
the IR is presumed to be an uncertain random variable and the model has two sources of uncertainty, as 
in the previous sections. A zero-coupon bond is priced under this framework in the following section.

Pricing a zero-coupon bond using a mean reverting uncertain stochastic  
short rate model

Here, a zero-coupon bond pricing model is examined in the framework of a mean reverting US short rate 
model.

Theorem 3: Suppose the short rate is explained by an USDE

                                                          ( ) 1 2t t t tdr m er dt W C= − + σ + σ , � (12)

where 1 2, , and�m e σ σ  represent constants, the price of the zero-coupon bond associated with a maturity 
date T is given by

( ) ( )2 2 2
2 2

0, 3 exp
T

P T eT
e e e

σ σ σ = β − + −  
( )( )0

1
� �exp 1� �exp

2

mT m
r eT

e e e

  × − − − − − ×    

( )2 2 2
2 2

� csc 3 exp
T

aT
e e e

 σ σ σ × − + −    
,

where
( ) ( )

0 0
exp (exp � ( exp ))

T T

ses E es dW ds
  β = − −    ∫ ∫ .

Proof: Equation 12 is the Vasicek model’s extension. The process tr  includes mean reversion. Applying 
theorem 2 to solve equation 12, we have

1 2 1 2 1 1 2 2, , 0,�� , 0,�� ��t t t t t ta e a m b b c and c= − = = = σ = = σ ,

which means ( )exptU et= − . This indicates

1 2
0

0 0 0
�

t t t

t t s s
s s s

m
r U r ds dW dC

U U U

 σ σ
= + + + =  ∫ ∫ ∫

( ) ( ) ( ) ( )0 1 2�
0 0 0

������ exp �exp exp exp .
t t t

s set r m es ds es dW es dC = − + + σ + σ  ∫ ∫ ∫
�Alternatively,

( )( ) ( ) ( )( )1 2exp exp expt t t t td et r et r dt et mdt r dt dW dC= + − + σ + σ =

( ) ( ) ( )1 2� exp exp expt tet mdt et dW et dC= − + − σ + − σ .

That is

( ) ( ) ( ) ( )0 1 2
0 0 0

exp exp exp exp
t t t

t s set r r m es ds es dW es dC= + + σ + σ∫ ∫ ∫ .
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This means

   ( ) ( )0
0

� exp exp
t

tr r et m es et ds= − + − +∫ ( ) ( ) ( ) ( )1 2
0 0

� exp exp � exp exp
t t

s set es dW et es dCσ − + σ − =∫ ∫
 
         

( ) ( )0� exp exp
m m

r et et
e e

= − + − − ( ) ( ) ( ) ( )1 2
0 0

� exp exp exp exp
t t

s set es dW et es dC =+σ − + σ −∫ ∫

                
( ) ( ) ( ) ( ) ( )0 1 2

0 0
� exp exp exp � exp exp

t t

s s

m m
et r et es dW et es dC

e e
 = + − − + σ − + σ −   ∫ ∫ , � (13)

given that 0e ≠ . �The expected value of tr  in equation 13 above is desribed by

					     ( )expt o

m m
E r et r

e e
 = + − −      

and the variance is described by

				    ( ) ( )
2
1 2 21 exp 2 exp

2tVar r t et
e e

σ σ σ = − − + − −    
.

Applying the local equilibrium hypothesis, the following is deduced

					     ( )
0

0, exp d
T

sP T E r s
  = − =    ∫

( ) ( ) ( ) ( ) ( )2
0 0 0 0

� exp (exp exp ) ( �exp � exp exp ) .
T T T T

s o s

m m
E es es dW ds E es r es es dC ds

e e

    = − − − + − − + σ −         ∫ ∫ ∫ ∫
That is,

( ) ( ) ( )
0 0

0, exp (exp exp ) �
T T

sP T E es es dW ds
  = − − ×    ∫ ∫
( ) ( ) ( )2

0 0
�exp ( exp � exp exp ) .

T T

o s

m m
E es r es es dC ds

e e

   × − + − − + σ −      ∫ ∫
Which translates to

( ) ( ) ( )
0 0

0, exp (exp � ( exp d ))d
T T

sP T es E es W s
  = − − ×    ∫ ∫

( ) ( ) ( )2
0 0 0

exp [ ( exp � exp exp ) ] .
T T

o s

m m
es r es es dC ds x dx

e e

∞  × + − − + σ − ≤ −    ∫ ∫ ∫

Let
β ( ) ( )

0 0
� exp (exp � ( exp ))�

T T

ses E es dW ds
  = − −    ∫ ∫ .

Thus,

                                                 ( ) ( )2 2 2
2 2

0, � 3 exp
T

P T eT
e e e

σ σ σ =β − + − ×  
                  
                                                 ( )( )0

1
exp 1 exp

2

mT m
r eT

e e e

  × − − − − − ×    

                                       ( )2 2 2
2 2

� csc 3 exp .
T

eT
e e e

 σ σ σ × − + −    

 � (14)

This concludes the proof since equation 14 is similar to the price of the zero-coupon bond in theorem 3. 
Klebaner (2005) indicated that if

( )( )2

0
d

T
E X t t < ∞∫ ,

then we have the zero-mean property which states that

( )
0

d 0.
T

tE X t W  =  ∫Since
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( )
0

exp(2 d ,
T
E es s < ∞∫  ( )

0
� exp d 0

T

sE es W  =  ∫ .

This means that by applying the zero-mean property, the zero-coupon bond price, instantaneous forward 
rate, and spot IR degenerate to the ones proposed by Chen (2016), that is
   

         

( ) ( ) ( )( )

( )

2 2 2
02 2

2 2 2
2 2

1
0, 3 exp � exp � 1 exp � �

2

csc 3 exp ,

T mT m
P T eT r eT

e e e ee e

T
eT

e e e

 σ σ σ   = − + − × − − − − − ×        

 σ σ σ × − + −    

( ) ( )ln 0,
0,

P T
S T

T
= − =

( )2 2 2
2 2

1
ln 3 exp

T
eT

T e e e

σ σ σ = − − + −   ( )( )0

1 1
� 1 exp

2

mT m
r eT

T e e e

  + + − − − −    

                                              
( )2 2 2

2 2

1
� ln�[csc 3 exp

T
eT

T e e e

 σ σ σ − − + −    
], � (15)

and ( ) ( ) ( )0,
f 0, / 0,

P T
T P T

T

∂
= − =

∂

( ) ( )2 2 2 2 2
2 2 2 2

�������������� exp / exp
T

e eT eT
ee e e e

σ σ σ σ σ   = − + − − + − =      

( ) ( )2 2
0 2

� exp � 3 exp
2

m m
r eT eT

e e ee

  σ σ  + − − − + − − ×        

( )2 2 2
2 2

� csc 3 exp
T

eT
e e e

 σ σ σ × − + −    
.

Remark: In the long run, the IR converges to 
m

a
 from 0r .

Numerical example
This section presents some numerical examples of the alpha path and zero-coupon bond pricing.

Example 1
Let the initial interest rate be 0 0.08r = , the instantaneous drift be 0.1e = , 1 0.15σ =  and 

2 0.2,�� 10�years�and� 0.002.T mσ = = =  The aim is to compute the α − path of equation 4 and equation 10 us-
ing the Euler-Maruyama method.

The α − path of equation 4 is given by

( )( )1
1 2t tdr e dtα −= + σ ρ+ σ Φ α

and the alpha path for its solution is

0 1 2

3
ln .

1t

t
r r etα  α= + + σ ρ+ σ  π − α 

In this case, ρ represents the realisations of a standard Wiener process, α  is a measure of belief and 
( )1

t
−Φ α  is the inverse uncertainty distribution given in definition 8 and the other parameters are as previ-

ously defined. The alpha path represents the evolution of interest rates under a specific belief degree α. 
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Alpha ranges from 0 to 1. These paths provide insights into the range of possible outcomes based on dif-
ferent levels of beliefs. In other words, α − path captures the system’s behavior at this specific belief degree. 
These paths are real-valued functions of time t , but are not necessarily one of the sample paths [43]. Alpha 
paths are derived from the inverse uncertainty distribution, which provides the value of the uncertain 
variable for each belief degree level.

Figure 1 represents the α − path graphs for an uncertain stochastic interest rate model in equation 4. 
Notice how the graphs diverge from each other for different alpha values. Also, note that tr

α  is a linear 
function of time. The α − path of equation 10 is given by

( ) ( )( )1
1 2t t tdr m er dtα α −= − + σ ρ+ σ Φ α

and the α − path for the solution is represented by

		         
( ) ( )( ) 1 2

0

3
exp 1 exp ln

1t

m t
r r et et

e e e
α

  σ ρ σ α= − + − − + +  π − α  
.

Note that the α − path for the solution of the mean-reverting model is no longer a linear function as in 
the previous case. Figure 2 displays the graphs for the α − path for equation 10.

The gradients of these graphs are reducing to zero as time progresses, indicating that they approach 
a minimum or a maximum value. In the next example, we price a typical zero-coupon bond using the 
proposed methods.

Example 2
Let 0 0.08r = , the instantaneous drift 0.1e = , 1 0.15σ =  and 2 0.2,�� 4�years�and� 0.002.T mσ = = =  The aim is 
to illustrate how the zero-coupon bond price evolves and the behavior of the instantaneous forward rate 
as time progresses.

After implementing the formulas in equations 7, 8, 14, and 15 into Python, the prices of the zero-coupon 
bond and the instantaneous forward rates over the years are obtained. The graph in Fig. 3, which is based on 
equation 7, shows the relationship between the zero-coupon bond price and the time to maturity under an 
uncertain stochastic short rate model. The zero-coupon bond price decreases as time to maturity increases, 
then it starts to increase again. The relationship is non-linear. The bond price is sensitive to changes in the 
short rate over time. Bond prices exhibit convexity, which can lead to non-monotonic behaviour. Also, the 
bond price decreases for shorter maturities due to the discounting effect and increases for long maturities 
due to mean reversion or declining rates.

The prices obtained from the model in Fig. 3 are less than those on the model in Fig. 4. Figure 4 shows 
the relationship between the zero-coupon bond price and the time to maturity under a mean reverting 
uncertain stochastic short rate model. It is based on equation 14.

Figure 4 produces a smoother curve than Fig. 3. Equation 14 is a variant of the Vasicek model with an 
additional Liu process. In contrast, equation 7 is an extension of Merton’s model that considers the effects 
of the Liu process. The model in equation 14 captures the behaviour of rates to stabilise around a long term 
average while the model in equation 7 assumes that interest rates follow a random walk, and this model 
can end up producing unrealistic long term behavior, for instance, interest rates becoming extremely high 
or low without a limit. However, Fig. 3 and 4 show that the prices from the two models do not differ with 
a greater magnitude.

Instantaneous forward rates in Fig. 5 and 6 increase with time, then they start to decrease.
Figure 5 above shows that the instantaneous forward rates based on equation 8 are greater than 

those in Fig. 6, which is based on equation 15. Also note that the graphs based on the mean-reverting 
process are smoother than the ones based on Merton’s model. The periods where the instantaneous 
forward rates are negative imply that zero-coupon bonds have negative returns. This can be caused 
by the central bank, which sets negative interest rates to stimulate growth in situations of deflation 
or stagnation.
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Also, this can be encountered in situations of financial stress. In addition, if markets foresee more negative 
interest rates, current forward rates may become negative. Apart from that, excess liquidity in the financial 
system can also contribute to negative instantaneous forward rates. In such situations, some investors can 
hold on to government bonds for their safety, while others may consider holding cash or other assets. Also, 
banks can struggle in making profits. These conditions are signals of weak economic growth or deflationary 
pressures.

 
Fig. 1. A Spectrum of α − path of 1 2t t t tdr e dt dW dC= + σ + σ

Source: Developed by the authors.

Fig. 2. A Spectrum of pathsα −  of ( ) 1 2t t t tdr m er dt W C= − + σ + σ
Source: Developed by the authors.
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Conclusions
In this study, we suggested an interest rate model utilizing USDEs in the US financial markets. We also derived 
the model to compute the price of a zero-coupon bond for the interest rate model. To illustrate how to com-
pute the price of the zero-coupon bond numerically, a practical example was presented. Modelling short-term 
interest rates and pricing zero-coupon bonds in the US environments represents a significant milestone in 
modelling financial markets under uncertainties. This approach is relevant in volatile or unpredictable market 
conditions. The US framework offers a flexible approach to pricing and risk management, allowing investors 
to combine epistemic uncertainty and exact probabilities into their models for zero-coupon bonds.

The proposed model can be applied to a wider range of emerging markets. The results obtained in this 
study can be extended beyond zero-coupon bond pricing to other IR derivatives. In addition, this approach 
can be integrated with machine learning to improve the prediction power. Also, this model can be applied 
in emerging markets, and policymakers and regulators can adopt this method in assessing the impact of 
interest rate shocks. However, the scope of this paper does not cover the use of real-world data. As part of 
our future work, an empirical validation will be carried out, and this will involve a rigorous comparative 
analysis of the developed model and established stochastic and uncertain models using real-world data 
in order to assess pricing accuracy and hedging effectiveness. In this process, we will estimate parameters 
and perform model calibration using real-world data.

 

Fig. 3. Price of zero-coupon bond against time to maturity for equation 7

Source: Developed by the authors.

Fig. 4. Price of zero-coupon bond against time to maturity for equation 14

Source: Developed by the authors.
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