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ABSTRACT

Over the past decades, financial markets have increasingly exhibited features of both randomness and
uncertainty, creating challenges for interest rate models that rely solely on stochastic or uncertain processes.
These models often fail to adequately capture the dual nature of indeterminacy, limiting their relevance in
volatile and unpredictable market conditions. This study aims to design and assess an interest rate model
for uncertain-stochastic financial markets and to derive a framework for zero-coupon bond pricing under
this setting. The methodology applies uncertain stochastic differential equations, which integrate elements
of both probability theory and uncertainty theory, thereby accommodating aleatory and epistemic forms of
indeterminacy. The proposed model extends the classical short-rate frameworks by introducing two sources
of indeterminacy and provides theoretical derivations for bond pricing. Numerical illustrations are included
to demonstrate the application of the model to zero-coupon bond valuation and to highlight differences from
conventional approaches. The findings indicate that interest rates and zero-coupon bond prices in uncertain
stochastic financial markets can be effectively modeled through uncertain random processes, leading to
improved pricing accuracy and risk management in environments characterised by incomplete information
and unpredictable shocks. The key conclusion is that incorporating uncertain stochastic differential equations
into the interest rate and zero-coupon bonds’ prices modelling offers a more robust and flexible framework
for uncertain stochastic markets. This study contributes to the growing body of uncertain stochastic finance by
underscoring the need for hybrid models capable of guiding policymakers, investors and financial institutions
in ensuring stability and resilience under future market uncertainties.
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OPUTUHANBHAA CTATbA

Mopaenb NpoueHTHbIX CTaBOK
ANA HeonpeaeneHHO-CTOXacTUYECKUX
(PUHAHCOBbIX PbIHKOB

k. Uupuma?, ®.P. Matenaa®, T.J1. Ky6pxaHa<, X.®. Mawene®
@YHuuepcutet bonbworo 3umbabee, MacsuHro, 3umMbabse;
b.¢dYupupepcuteT KOxHOM Adpuku, MNMpetopus, KOxHO-AdpukaHckas Pecnybnuka

AHHOTALUMUA
3a nocnegHve 0ecaTUNeTUs GUHaHCOBbIE PbIHKM BCE Yalle AeMOHCTPUPYIOT YepTbl Kak CIy4aiHOCTH, TaK U He-
OnNpeneneHHOCTH, YTO CO34AET TPYAHOCTH ANS MOLENEN NPOLEHTHbIX CTABOK, OCHOBAHHbIX MCKMOUMTENBHO Ha
CTOXACTUYECKMX MU HEOMpPeaeNeHHbIX NPoLEeccax. 3TM MOAENM YaCTo HEALEKBATHO OTPAXKAIOT ABOMCTBEHHYHO
NpUpOLY HEONPELENEHHOCTH, YTO OrPAHUYMBAET UX MPUMEHUMOCTb B BONATU/bHbIX U HEMPEACKA3yeMbIX pbl-
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HOUHbIX ycnoBusx. Llenblo faHHOro uccnenoBaHus SBnseTcs pa3paboTka M oLeHKa MOAeNn NPOLEHTHOM CTaBKK
ANS HeonpeneneHHO-CTOXaCTMYeckMx GUHAHCOBbIX PbIHKOB M pa3paboTka Moaenu ueHoobpasoBaHus 0bau-
raumim C HyneBbIM KYNOHOM B 3TUX ycnoBusix. Metoponorua ucnonb3yet HeonpeaeneHHble CTOXacTuyeckmne
AnddepeHumanbHbie ypaBHEHMUS, KOTOpble 00beAMHSIOT 31eMEHTbl Kak TEOpUKM BEPOATHOCTEN, TaK 1 Teopun
HeonpeLeneHHOCTHU, TEM CaMbIM YUMTbIBAS aneaTopHble U anucTeMuyeckune hopmbl HeonpeneneHHocTw. MNpea-
naraemas Mogenb paclumpseT Knaccmyeckme MOAeNM KpaTKOCPOYHbIX CTaBOK, BBOAS ABA MCTOYHMKA Heonpeae-
NEHHOCTM U NpenoCTaBnss TeOpeTUUYecKne BbIBOAbI ANs onpeaeneHus LeHbl obnuraumii. [puseneHbl Y1CnoBble
WANOCTPAaLMK A9 AEMOHCTPALMM NPUMEHEHNS MOLENU K OLeHKe 0b6auraumii ¢ HyneBbIM KYNoHOM W A5 BbiSiB-
NEeHWUs OTANYMI OT TPAAMLMOHHBIX NOAX0A0B. PesynbraTbl MCCNen0BaHMs NOKA3bIBAKOT, YTO MPOLLEHTHbIE CTABKM
W LeHbl 06Mraumii C HyNeBbIM KYNMOHOM Ha HeoMnpeaeneHHbIX CTOXaCTUYeCKMX GUHAHCOBbLIX PbIHKaX MOTYT BbiTb
3bdeKTUBHO CMOAENMPOBAHbI C MOMOLLBIO HEOMNpeAeneHHbIX CAyYanHbIX MPOLECCOB, YTO MPUBOAUT K NOBbI-
LIEHMIO TOYHOCTU LLeHO0Bpa30BaHMS U YIPABAEHUIO PUCKAMK B YCIIOBUSX HEMOMHOM MHbOPMaLMK U Henpea-
CKa3yeMbix WOKOB. KnoueBoi BbIBOA, 33aKNH0YAETCS B TOM, YTO BKJIKOUEHME HEOMNPEeLeNneHHbIX CTOXaCTUYECKUX
AnbdepeHLManbHbIX YpaBHEHWUI B MOAENMPOBAHUE MPOLLEHTHBIX CTABOK U LieH 061Mraumii ¢ HyNeBbiM KyNOHOM
obecneynBaeT 6onee HafeXHY U TMOKYIO CTPYKTYpY ANs HEOMpeAeNeHHbIX CTOXaCTUYEeCKMX PbIHKOB. [laHHOe
uccnefoBaHWe BHOCUT BKNAA, B pacTylMii 06beM 3HAHUI HeonpeaeneHHbIX CTOXacTUYeckux GUHAHCOB, Noa-
yepkMBas HeobX0AMMOCTb TMOPUAHBIX MOAeNei, CNOCOBHbIX MOMOYb MONUTUKAM, UHBECTOPAM U (BUHAHCOBLIM
yypexaeHusmM obecneuntb CTabunbHOCTb M YCTOMYMBOCTb B YCI0BMUAX ByayLlen pblIHOYHON HeonpeaeneHHoCTH.
Kniouesbie cnosa: HeonpeneneHHOCTb; CIy4alHOCTb; HETOYHOCTb; MOJENb NPOLLEHTHOM CTaBKM; LeHoobpa3oBa-
Hue o0bnmraumnin C HyneBbIM KyNOHOM; TEOpUSi BEPOSITHOCTEN; TEOPUS HEONPeaeNEeHHOCTH; TeEOPUS CTYHaNHOCTY;
HeonpeneneHHble cToxacTuyeckme GUHAHCOBbIE PbIHKKU; HeonpeaeneHHble CyyaiHble NpoLecchl; Heonpeae-
NeHHble cToXacTnyeckne anddepeHumanbHble ypaBHeHuUs

Ana yumuposanus: Chirima J., Matenda F.R., Kubjana T.L., Mashele H.P. An interest rate model for uncertain-
stochastic financial markets. Review of Business and Economics Studies. 2025;13(3):109-126.DO0I: 10.26794/2308-
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Introduction

Financial decisions, in practice, are executed under
the condition of indeterminacy. Uncertainty and

randomness are two common kinds of indetermi-
nacy [1, 2]. Probability theory, introduced by [3],
deals with randomness and uncertainty theory, de-
veloped by [4] and enhanced by [5], models human

subjective uncertainty. Matenda and Chikodza pos-
tulated that the probability theory is implemented

when the sample size is large to generate the prob-
ability distribution from the existing frequency [6].
On the contrary;, if the size of the sample is nonex-
istent or too small to generate the probability dis-
tribution, the theory of uncertainty is implemented

[6]. In this case, domain specialists are requested

to assess their belief degrees of each event occur-
ring [7-9]. Implementing probability theory in this

situation results in counterintuitive results. Using
uncertainty theory ensures that no counterintui-
tive results arise [10].

Stochastic processes, random variables and sto-
chastic differential equations (SDEs) are essential in
probability theory because they are implemented to
deal with random phenomena that change with time
[11, 12]. The Brownian motion is one of the broadly
implemented stochastic processes in practice [13, 14].
SDEs are powered by stochastic processes. Applying

probability theory in the finance discipline resulted
in the birth of the theory of stochastic finance. Hence,
stochastic processes and SDEs are essential tools in
stochastic financial markets. Since the publication of
the classical work of [15], SDEs have been extensively
implemented in finance theory. The work [15] pro-
pounded that the price of a stock can be explained by
an exponential Brownian motion and then designed
option pricing formulae for the European options.

One of the most important mathematical frame-
works in finance is the short-rate interest model, which
describes the progression of interest rates (IRs) over
time. This framework focuses on the short-term inter-
est rate (IR), which we can simply call the short rate.
It is applicable for the shortest period and is often
interpreted as an instantaneous rate. Short-rate inter-
est models have been widely used in the IR derivatives
pricing, bond valuation and risk management. Tradi-
tional short rate models make use of SDEs to elucidate
short-term IR progression. Quite a number of models
incorporate mean reversion, which is the tendency of
IRs moving towards, over time, a long-run average.
These short rate models are usually developed in the
context of the risk-neutral measure framework.

In 1973, [16] explained the IR by implementing
stochastic processes to establish the zero-coupon
bond price. The most common stochastic short rate
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models have been developed by [7-10] and references
thereof. A general form of the IRs term structure
was examined by [17]. The author suggested a novel
mean-reverting IR model powered by a Wiener pro-
cess. In 1986, [18] developed [16]’s IR model, assum-
ing a no-arbitrage principle. For more expositions on
the implementation of SDEs in IR modelling, see, for
instance, [19, 20]. Fundamentally, stochastic financial
models are premised on the supposition that asset
prices are only subject to random movements [21, 22].

Some short-rate models are computationally ef-
ficient, practical for real-world applications, incor-
porate mean reversion, are consistent with observed
market prices, and are used in a wide range of ap-
plications that are easy to understand and apply.
However, some of them allow for negative IRs, as-
sume a single source of uncertainty, have calibration
challenges, are unable to fit the entire yield curve,
are over-simplified, assume constant volatility, are
difficult when pricing complex derivatives and are
computationally expensive.

In uncertainty theory, uncertain processes, uncer-
tain variables, and uncertain differential equations
(UDEs) are essential because they explain dynamic
uncertain systems [23, 24]. The Liu process [5] is a
commonly implemented uncertain process. UDEs
are driven by uncertain processes. The application
of uncertainty theory in the discipline of finance
resulted in the emergence of the theory of uncertain
finance. As a result, uncertain processes and UDEs
are essential tools in stochastic financial markets.
UDEs were first applied in financial models by [5]. [5]
postulated that the price of a stock could be explained
by an exponential Liu process. The author [5] further
priced the European options for stocks premised
on an uncertain stock model. Since the publication
of the classical work of [5], UDEs have been widely
adopted in finance theory (see, for instance, [25-27]).

UDEs have been broadly implemented to model
rates of interest in uncertain financial markets [28—
30]. In an uncertain environment, [31] presumed
that the rate of interest is an uncertain process and
applied UDEs to describe the IR and priced, in ana-
lytic form, a zero-coupon bond. [31] designed the
initial uncertain IR model for uncertain markets,
even though the rate of interest may be negative in
this model. [32] developed the pricing formulae for
IR floors and ceilings. Implementing an uncertain
fractional differential equation, [33] designed an
IR model. [34] generated an IR model using an un-
certain exponential Ornstein-Uhlenbeck equation.

Some authors, specifically [35, 36], demonstrated
that UDEs could model IRs.

Most studies have modelled indeterminacy by
independently using randomness or uncertainty.
However, [37-40] revealed that uncertainty and ran-
domness could concurrently materialize in a process.
Similarly, [21] indicated that, in reality, financial mar-
kets frequently comprise human uncertain factors
and stochastic factors. Randomness is the aleatory
uncertainty, while Liu’s uncertainty is the epistemic
type. Recent developments in various fields have
shown that it is essential to include both random-
ness and uncertainty when modelling indeterminacy.
Hence, studies on indeterminacy have led to novel
discoveries on how to describe processes with both
uncertainty and randomness. [37] introduced the
chance theory to deal with both randomness and
uncertainty in sophisticated mathematical systems.
Interestingly, [6] propounded that probability theory
and uncertainty theory supplement one another.

A chance measure, a chance space, a chance distri-
bution, an uncertain random variable, expected value,
and variance were introduced by [37]. In 2015, [41]
presented an uncertain random process to describe
the uncertain random phenomena dynamics that
change with time. Uncertain stochastic differential
equations and uncertain random processes are central
to the discipline of uncertain random calculus because
they describe the evolution of different processes with
randomness and uncertainty. The USDE is powered
by a canonical Liu process and a Brownian motion
[42]. USDEs are driven by US processes. The adoption
of chance theory in the discipline of finance resulted
in the establishment of the US finance theory. Hence,
uncertain stochastic (US) processes and USDEs are
imperative tools in US financial markets.

B. Liu [43] examined several aspects of uncer-
tain random variables, which include problems in
mathematical programming, risk analysis, reliability
analysis, graph theory, network problems, to mention
but a few. For US financial markets, [6] developed a
stock model with jumps. This model was later ap-
plied in solving a US option pricing problem in the
existence of uncertain jumps by [44]. Recently, [45]
proposed a US optimal control model with a jump and
applied it to portfolio game symmetry. [46] tackled a
multi-objective optimization problem in uncertain
random environments. [47] applied US systems with
Markovian switching in solving a portfolio selection
problem. Interestingly, until now, no study has de-
signed an IR model for US financial markets.
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In this study, we suggest that the short rates of interest are driven by USDEs in the US financial markets.
In this framework, the presumption is that the IR is driven by two sources of uncertainty. Employing an
uncertain differential equation, we design a US IR model and then implement that model to price a zero-
coupon bond. For effective and efficiency purposes, numerical examples concerning zero-coupon bond
pricing are presented.

The rest of the article is arranged as follows: Section 2 covers the preliminaries, and Section 3 examines
a US short-rate model. Numerical examples are outlined in Section 4. Conclusions are given in Section 5.

Preliminaries

This section outlines crucial definitions concerning uncertainty theory, probability theory and chance
theory. We presume a complete filtered uncertainty probability space (F X Q, L XF, Mx P) character-
ised by a filtration (£x 7, )rf[O’T] , created by a standard a one-dimensional Brownian motion, {W,} 1, 7,
and a one-dimensional Liu process, {CT}e[o,T] .Basically, I" x Q represents the universal set, £Lx F isa
product c-algebra, Mx P signifies a product measure and (F X QL XF,M xP) denotes an uncer-
tainty probability space.

Definition 1 Presume Q denotes a non-empty set and F represents a o-algebra over Q. Every com-
ponent A in F is an event. A probability measure refers to a set function P: F — [O, 1] which fulfills the
below-stated axioms:

e Normality: P{Q} =1 for the universal set Q

« Non-negativity: P{4} >0 for every event 4 ;

» Additivity: For each countable series of mutually disjoint events

A, Ay A P{OA,}ziP{A[}.
i=1 i=1

Definition 2 A random variable refers to a function € from a probability space (Q, F, P) to a set of real
numbers in a manner that for each Borel set B of real numbers, {e € B} is regarded as an event.

Definition 3 Presume (Q, 7, P) denotes a probability space, and T is an index set. A stochastic process
refers to a measurable function X, (co) from 7' x (Q, F, P) to the set of real numbers in a manner that at
any time t, for every Borel set of real numbers, {X, € B} is an event. Basically, a stochastic process refers
to a series of random variables indexed by space or time.

Definition 4 A stochastic process W, is regarded as a standard Brownian motion if

» W, =0, and almost all sample paths are continuous,

 W.is associated with independent and stationary increments,

« each increment W, —W, is a normal random variable with variance t and an expected value 0.

Definition 5 [4] Presumed that /" denotes a non-empty set,and £ represents a c-algebra over /. Each
component A in £ is regarded as an event. Basically, an uncertain measure refers to a set function
M : £ —[0,1] which fulfills the below-stated axioms:

e Normality: M{T}=1;

 Monotonicity: M{r, }<M{r,} if A| CA,;

¢ Duality: /\/l{/\1 }—i—/\/l{/\f} =1 for each A€/

« Sub-additivity: For each countable event series {A,A,,...}, M { U~ } <> Min, } :

Definition 6 [4] An uncertain variable refers to a measurable function ¢ from an uncertainty space
(I', £, M) to the set of real numbers in a manner that for every Borel set B, {e € B} is regarded as an
event.

Definition 7 [37] Presume that 7 is regarded as an index set,and (/", £, M) denotes an uncertainty
space. Conceptually, an uncertain process refers to a measurable function X, (y) from 7" x (F, L, M) to the
set of real numbers in a manner that at any time 7, for each Borel set B, {X s B} is regarded as an event.

Definition 8 [5] An uncertain process C, is a Liu process if

e C, =0, and almost all sample paths are Lipschitz continuous,

* C, isassociated with independent and stationary increments,
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« eachincrement C,,, —C, is regarded as a normal uncertain variable characterised by variance #*and
expected value 0, whose uncertainty distribution is described by

®(x) =(1+exp(—%D_l xR

Definition 9 [37] Assume that (F, L, M) X (Q, F, P) denotes a chance space,and © € L X F represents
an uncertain random event. Hence, a chance measure Ch{0} is given by

Chi®)= [ Plo]Q| Miyer|(1.0)c0} > rid-.

A chance measure fulfills the following axioms:

e Normality: (Liu, 2013) Ch(T'xQ)=1, Ch{@}=0;

¢ Monotonicity: (Liu, 2013) Cr{®,}<Chr{®,} for each event ©, <O, ;

* Self-duality: (Liu, 2013) ch{e}+Ch{e°}=1 for each event ©; - -
 Sub-additivity: (Hou, 2014) For each countable series of events 91,92--.,Ch{U 9,} = ZCh {e};

e Null-additivity: (Hou, 2014) Assume that ©,,0,..., denotes a series of events with Ch{©,} -0
as i — oo. So, for each event
limCh{®UO, } =lim Ch{@g} =Ch{®}.

[—o0
1

This implies that Ch {91 U @2} =Ch {91 }+ Ch {@2} if either Ch {91 } =0 or Ch {@2 } =0;
e Axiom 6: Asymptotic (Hou 2014) For each series of events ©,,0,,...,

limCh {©,} > 0,if®, TIrxQ, limCh {©,} < Life,l @.
Definition 10 [37] An uncertain random variable refers to a measurable function & from a chance space
{r,c,M}x{Q,F, P} to the real numbers’ set in a manner that for any Borel set B of real numbers, the set
{ee B} ={(v,0)|&(y,0)e B} is regarded as an uncertain random event in £x F.
Definition 11 [42] (i) An uncertain random variable refers to a measurable function & from an uncer-
tainty probability space (F X Q, L XF, Mx P) to the real numbers’ set in a manner that for each Borel
set B of real numbers, the set

{eeB}={(,0)eTxQ|&(y,0) € Bye L X F

is regarded as an event.
(i) The expected value of an uncertain random variable & is described by

E[E]=E,[Ey[e]]

given that the operations on the right-hand are described well. The operators
E, andE,

represent the expected values in the context of the probability space and uncertainty space, respectively.

Suppose b and a are constants, £ [aC, +bW, ] =0, where W, is a standard one-dimensional Brownian
motion and C, is a Liu process. Interestingly, the uncertain random variable definitions introduced by [37]
and [42] are not similar. The definition propounded by [37] indicates that an uncertain random variable is
generally a function from a probability space to a set of uncertain variables [42].

Definition 12 [41] Assume that 7" is a completely ordered set and (T X QL X F,Mx P) referstoa
chance space. Conceptually, an uncertain random process refers to a measurable function X, (y, 03) from
T % {Fx Q LXF , Mx P} to the set of real numbers in a manner that the set
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{X,eB}={(7,0)eT'xQ]| X, (y,0) € B}

is regarded as an uncertain random event in £x F for every Borel set B of real numbers at any time
te T . Basically, an uncertain random process refers to a series of uncertain random variables indexed by
time or space, 7€ [0, «) and is described on a chance space {I'xQ, LxF, Mx P}.

Uncertain stochastic short-rate model
This study assumes that the IR can be explained by an USDE. Hence, a US IR model to explain the dynam-
ics of the IR is examined under this framework. An US IR model in US markets can be explained by a USDE
dr, = e(z‘,r,)a’t+cs1 (t,r,)a’W, +0, (t,r,)dCt,

where the short IR at time ¢ is given by r, and the drift e, stochastic diffusion ¢, and uncertain diffusion

o, are presumed to be functions of t and r. This model is an expansion of the model suggested by [6] in
1973.1t is a sole factor short-term IR model that represents the evolution of the IR 7, in the presence of
epistemic and aleatory uncertainty. The model lacks mean reversion, the IR is an uncertain random vari-
able, and the model has two sources of uncertainty, that is, epistemic and aleatory uncertainty. Aleatory
uncertainty is premised on the random experiment outcomes’ unpredictability, while epistemic uncer-
tainty is powered by the deficiency of adequate or precise knowledge about facts. In the following section,
the model is going to be used in zero-coupon bond pricing.

Pricing a zero-coupon bond using an uncertain stochastic short rate model
[48] indicated that if P (t, T ) is the price of the zero-coupon bond associated with a maturity date T, then
if today is time ¢, the maturity time can be defined as T=T7 —¢. Also, [31] propounded that the t-period
spot IR at time ¢ is described by s(z,7'). In addition, [48] indicated that the t-period spot rate of interest
at time t satisfies the equations

P(1,T)=exp(-s(t,T)(T 1)),

and InP(£,T)

(T-1) M

s(1,T)=

Further, [48] propounded that, suppose f(,7) denotes a forward IR deduced from the zero-coupon

bond, then ;
P(1,T)= exp(—.[ f(t,T)dsj,
and '
oP(1,T)
___ T 2)
f(r,T)= T

If the short IR is presumed to follow a USDE, the zero-coupon bond price P(t, T ) is the anticipated
value of one dollar discounted by the probable short rate process’s paths. [48] indicated that the local
equilibrium hypothesis is that the expected immediate return is given by the short rate of the form

E[P(t+A1T)]

PT) =exp(r,At), as At — 0.

From the local equilibrium hypothesis, the zero-coupon bond price P(#,T’) is described by

P(1.T)= E[exp(— | tTrVdvﬂ. 3)
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The savings account is represented by
t
B(1)= exp( | Or(s)ds).
Theorem 1: Suppose a short rate is described by an USDE of the form
dr, =edt+c6,dW,+0,dC,, “)

where e, is a function of t and ¢, and 6, denote the constants, then the price of the zero-coupon bond
associated with a maturity date T'is given by

, 5
P(O,T):%\/gcsz exp(—rOT | ;J.Oe,dtds—GlTp)csc(%\/gclﬁ), (5)

Proof: Equation 4 is an extension of Merton’s model, whose solution, 7, , is of the form

t
r=r +J0esds +o,W,+0,C,.
The expected value of 7, is

t t
E[r, :| = E[ro +J-Oesa’s +o,W,+0,C, } =r, +I0esds
and its variance is described by
Var[rt :| = Var[r0 + J;esds +o,W,+0,C, } =oit+oit’.

From equation 3, for 7 =0,

P(0,T)= E[exp(—.[oTrsdsH _ epr:M[ | OTrsds < —x]}dx -

oo tes
= exp| [ OM[r0T+jOJOe,dtds+Gle +0,TC, <—x]dx] =

T p¢s
—x—iT- | Ojoe,dtds—G]TW,
c,T

=exp[ [, [M[C, < ]dx] =

-1

Tps
n(—x—rOT—J.O.[Oetdtds—GlTlfV,)

=exp J: I+exp| — \/30 P, dx |.
2
Replacing W, with its realizations p, we have
T s -!
B n(—x—rOT—JOJOe,dtds—GlTp)
P(0,7)=| [ || 1+exp| - NPT dx | =
2
1 2 s 1 2
:EﬁczT exp(—rOT—JO'[Oe,dtds—GlTp)csc(EﬁczT ) (6)
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Thus, the proof is concluded since equation 6 equals equation 5 which is the price of the zero-coupon
bond. Replacing e, in equation 6 with a constant e gives

P(0,T)= %\/gcsz exp(—rOT—%eﬂ —olij csc(%\/gcsz) : (7
Applying equations 1 and 2 to equation 7, the forward IR is given by

s(o,T)=_%TO’T)=

oL ofee{ )
=—#+5eT+r0+olp— T
and the spot IR is described by

®)

3

£(0,7)=——9L _~

=—%+eT+r0+Glp+\/§GzT csc(%x/gqﬂ). )

Uncertain stochastic mean reverting short rate model
In this section, an US mean reverting short rate model is proposed. Consider a linear USDE.
Theorem 2: Let a,,a,,,b,,b,,,c,,,c, be integrable uncertain random processes. The linear USDE

dX, =(a, X, +a, )dt+(b, X, + b, )dW, +(c, X, +¢,,)dC, (10)

has solution

X, =U, [X0+j;‘(’]25 ds+j;ZAdWS +j;‘2—sdch (11)

N

where . ) .
U, = exp(JOalsds+J0blsdPI/S +J0c1SdCs )
Proof: Let V, and U, be two US processes such that

dU, =a,U,dt+b,U,dW,+c,U,dC,,

AT R Tol
U U U

t
From integration by parts, ! t !

d(UV,)=V,dU,+U,dV, =(a, UV, +a,)dt +(b,UV,+b,)dW, +(c, UV, +c,, )dC,.
An uncertain random process in equation 11 given by X, =U,V is a solution to equation 10 where

U, = erxp(J;alsds + [ n,aw, +J;clstS)

and a, b, e,

V,=Vy+[ “2ds+ | 22dw,+ [ “2dC,.

If t OUS OUS N OUS N
Vo=X,and U, =1,

theorem 2’s solution is obtained; thus, the proof is concluded.
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An US mean reverting IR model in US markets can be described by an USDE

dr, = (m—er,)a’t+(51W, +0,C,,
where m,e,c,and ¢, are constants. This model is an expansion of the model suggested by [7] in 1977. It
is a sole factor short term IR model that represents the evolution of the IR 7, in the presence of aleatory
and epistemic uncertainty. The model incorporates mean reversion to the dynamics of the IR process,
the IR is presumed to be an uncertain random variable and the model has two sources of uncertainty, as
in the previous sections. A zero-coupon bond is priced under this framework in the following section.

Pricing a zero-coupon bond using a mean reverting uncertain stochastic
short rate model
Here, a zero-coupon bond pricing model is examined in the framework of a mean reverting US short rate
model.
Theorem 3: Suppose the short rate is explained by an USDE
dr, =(m—er,)di+o,W, +0,C, (12)

where m,e,,and ¢, represent constants, the price of the zero-coupon bond associated with a maturity
date T'is given by

P(0.7)=pV3 [GzT —%+%exp(—eT)) < exp(—m—T—l(rO—%)(1—exp(—eT))]x

e 2e e

X csc(\/g(ﬂ—c—;+6—2zexp(—aT)D ,
e e e

where

B= exp(—[fZ(exp(—es)E(fzexp(es)dWs ))dsD X

Proof: Equation 12 is the Vasicek model’s extension. The process 7, includes mean reversion. Applying
theorem 2 to solve equation 12, we have

a, =-e,a,, =m,b, =0, b, =0,,¢,=0, and ¢,, =0,,

which means U, = exp(—et). This indicates
r=U, [ro +J;Uﬂds+j;%dW5 +J;%dqj -
t t t
= exp(—et)(ro +I0m exp(es)ds+‘|.0cs1 exp(es)dW, + -[062 exp(es)dCs).
Alternatively,
d(exp(et)r,) = exp(et)r,dt +exp(et)(mdt — r,dt +&,dW, +6,dC,) =

= exp(—et ) mdt + exp(—et)o,dW, +exp(—et ) 6,dC,.

That is
exp(er)r, =ry + mj;exp(es)ds + Glj;exp (es)dW, +02J;exp (es)dC,-
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This means
- exp(—et)+mJ.t exp(es—et)ds+ O, exp(—et)‘[;exp(es)dWX +0, exp(—et)J;exp(es)dCs =

=r, exp(—ef )+ﬂ—ﬂexp( 1) +o, exp(—et).[;exp(es)dWs +0, exp(—et).[;exp(es)dCs =
e e

= ﬂ+exp(—et)(r0 —ﬂ]ﬂsl exp(—et)'[;exp (es)dW, +0,exp (—et)J;exp (es)dC,, (13)
e e

given that e # 0. The expected value of 7, in equation 13 above is desribed by

£ )= vomni-e(-

and the variance is described by

Varlr, :| = ol [1 exp(— 2t)] + o2 exp(—et)& :
e e
Applying the local equilibrium hypothe31s, the following is deduced

P(0,T)= E[exp(_jzrs dsﬂ -
_ exp[— E[ [ (exp(-es)] :exp(es)dVVS)ds}— E[j:(§+ exp(—es)(ro —%)mz exp(~es) | exp(es)dC, )dsD.

That is,

P(0.7)= exp(—E[ [ exp(-es) [ exp (es)dm)dsDx
x exp[-E[jOT(?+ exp(—es)(ro -%)mz exp(~es) || exp(es)dC, )dsD.

Which translates to
T
P(0,T) exp( U (exp(— E(J.Oexp(es)dI/Vs))dsDx

X exp“jj\/l[j:(?7L exp (—es)(ro e, exp(—es)_[:exp(es)dcs )ds < —x]}dx

e
Let
T T
= - —es)FE dW ))ds | |.
F[[S‘hu:(p[ Uo(exp( es) (JO exp(es)dW,)) sD

P(O,T)zB\/g(GZT—%+e—exp( T)Jx

mT 1
Xexp[‘z‘z[“?)(l e"p(‘”))j
(14)
xcsc(\/g(ﬂ—c—zz+0—22exp(—eT)D.
e ¢ e

This concludes the proof since equation 14 is similar to the price of the zero-coupon bond in theorem 3.
Klebaner (2005) indicated that if .
[ E(X*(r))dr <o
0

then we have the zero-mean property which states that

Since EUZX(t)dVK):O.

118

rbes.fa.ru



An Interest Rate Model for Uncertain-Stochastic Financial Markets

J:E(exp(2es)ds < oo, E(J:exp (es)dW, ) =0.

This means that by applying the zero-mean property, the zero-coupon bond price, instantaneous forward
rate, and spot IR degenerate to the ones proposed by Chen (2016), that is

p(o,T):ﬁ(“zT % T~ eT))xexp[—n;—Z—l(ro—;j(l exp(- eT))]x

e e
c,I' o, o,
x csc| /3 ———+—exp( eT) ||,
e & e
S(O,T)z_lnP(O,T)z
T
1 c,' o, © 1({mT 1 m
=B T Srentee) | o 5w - eteer) |-
—%ln [csc(\/g(%—%+%exp(—eT)j I, (15)
and f(O,T)z—%/P(O,T)—

(2ot (5% cen)

XCSC(\/?(—T—&-I-e—eXP( eT)D.

e e

Remark: In the long run, the IR converges to 2 from Ty .
a

Numerical example
This section presents some numerical examples of the alpha path and zero-coupon bond pricing.

Example 1
Let the initial interest rate be 5, =0.08, the instantaneous drift be e=0.1, ¢,=0.15 and

6,=0.2, T =10years and m = 0.002. The aim is to compute the o.— path of equation 4 and equation 10 us-
ing the Euler-Maruyama method.

The o — path of equation 4 is given by

dr* = (e +0,0+0,®," (oc))dt

and the alpha path for its solution is

r*=r +et+o,p+0 ﬂlni
' 0 IPT O, T ol
In this case, p represents the realisations of a standard Wiener process, o is a measure of belief and
<I>,‘1 (oc) is the inverse uncertainty distribution given in definition 8 and the other parameters are as previ-
ously defined. The alpha path represents the evolution of interest rates under a specific belief degree o.
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Alpha ranges from 0 to 1. These paths provide insights into the range of possible outcomes based on dif-
ferent levels of beliefs. In other words, o. — path captures the system’s behavior at this specific belief degree.
These paths are real-valued functions of time 7, but are not necessarily one of the sample paths [43]. Alpha
paths are derived from the inverse uncertainty distribution, which provides the value of the uncertain
variable for each belief degree level.

Figure 1 represents the o — path graphs for an uncertain stochastic interest rate model in equation 4.
Notice how the graphs diverge from each other for different alpha values. Also, note that r” is a linear
function of time. The o — path of equation 10 is given by

dr® = ((m —er” ) +0,0+0,P," (oc))dt

and the o — path for the solution is represented by

r® =ryexp(—et)+(1- exp(—et))[ﬂ+%+ﬁ(£lni]] .

e e el m l-o

Note that the o — path for the solution of the mean-reverting model is no longer a linear function as in
the previous case. Figure 2 displays the graphs for the o — path for equation 10.

The gradients of these graphs are reducing to zero as time progresses, indicating that they approach
a minimum or a maximum value. In the next example, we price a typical zero-coupon bond using the
proposed methods.

Example 2
Let r, =0.08, the instantaneous drift e=0.1,6, =0.15 and 6, =0.2, T =4 yearsand m = 0.002. The aim is
to illustrate how the zero-coupon bond price evolves and the behavior of the instantaneous forward rate
as time progresses.

After implementing the formulas in equations 7, 8, 14, and 15 into Python, the prices of the zero-coupon
bond and the instantaneous forward rates over the years are obtained. The graph in Fig. 3, which is based on
equation 7, shows the relationship between the zero-coupon bond price and the time to maturity under an
uncertain stochastic short rate model. The zero-coupon bond price decreases as time to maturity increases,
then it starts to increase again. The relationship is non-linear. The bond price is sensitive to changes in the
short rate over time. Bond prices exhibit convexity, which can lead to non-monotonic behaviour. Also, the
bond price decreases for shorter maturities due to the discounting effect and increases for long maturities
due to mean reversion or declining rates.

The prices obtained from the model in Fig. 3 are less than those on the model in Fig. 4. Figure 4 shows
the relationship between the zero-coupon bond price and the time to maturity under a mean reverting
uncertain stochastic short rate model. It is based on equation 14.

Figure 4 produces a smoother curve than Fig. 3. Equation 14 is a variant of the Vasicek model with an
additional Liu process. In contrast, equation 7 is an extension of Merton’s model that considers the effects
of the Liu process. The model in equation 14 captures the behaviour of rates to stabilise around a long term
average while the model in equation 7 assumes that interest rates follow a random walk, and this model
can end up producing unrealistic long term behavior, for instance, interest rates becoming extremely high
or low without a limit. However, Fig. 3 and 4 show that the prices from the two models do not differ with
a greater magnitude.

Instantaneous forward rates in Fig. 5 and 6 increase with time, then they start to decrease.

Figure 5 above shows that the instantaneous forward rates based on equation 8 are greater than
those in Fig. 6, which is based on equation 15. Also note that the graphs based on the mean-reverting
process are smoother than the ones based on Merton’s model. The periods where the instantaneous
forward rates are negative imply that zero-coupon bonds have negative returns. This can be caused
by the central bank, which sets negative interest rates to stimulate growth in situations of deflation
or stagnation.
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Fig. 1. A Spectrum of o.— path of dr, =e,dt +c6,dW, +,dC,

Source: Developed by the authors.

Fig. 2. A Spectrum of 0.— paths of dr, = (m —er, )dt +o,W,+0,C,

Source: Developed by the authors.

Also, this can be encountered in situations of financial stress. In addition, if markets foresee more negative
interest rates, current forward rates may become negative. Apart from that, excess liquidity in the financial
system can also contribute to negative instantaneous forward rates. In such situations, some investors can
hold on to government bonds for their safety, while others may consider holding cash or other assets. Also,
banks can struggle in making profits. These conditions are signals of weak economic growth or deflationary
pressures.
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Fig. 3. Price of zero-coupon bond against time to maturity for equation 7

Source: Developed by the authors.
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Fig. 4. Price of zero-coupon bond against time to maturity for equation 14

Source: Developed by the authors.

Conclusions

In this study, we suggested an interest rate model utilizing USDEs in the US financial markets. We also derived

the model to compute the price of a zero-coupon bond for the interest rate model. To illustrate how to com-
pute the price of the zero-coupon bond numerically, a practical example was presented. Modelling short-term

interest rates and pricing zero-coupon bonds in the US environments represents a significant milestone in

modelling financial markets under uncertainties. This approach is relevant in volatile or unpredictable market

conditions. The US framework offers a flexible approach to pricing and risk management, allowing investors

to combine epistemic uncertainty and exact probabilities into their models for zero-coupon bonds.

The proposed model can be applied to a wider range of emerging markets. The results obtained in this
study can be extended beyond zero-coupon bond pricing to other IR derivatives. In addition, this approach
can be integrated with machine learning to improve the prediction power. Also, this model can be applied
in emerging markets, and policymakers and regulators can adopt this method in assessing the impact of
interest rate shocks. However, the scope of this paper does not cover the use of real-world data. As part of
our future work, an empirical validation will be carried out, and this will involve a rigorous comparative
analysis of the developed model and established stochastic and uncertain models using real-world data
in order to assess pricing accuracy and hedging effectiveness. In this process, we will estimate parameters
and perform model calibration using real-world data.
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Fig. 5. Instantaneous forward rate against time to maturity for equation 8

Source: Developed by the authors.
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Fig. 6. Instantaneous forward rate against time to maturity for equation 15

Source: Developed by the authors.
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